
Developers’ Manual Version 1.0
October 27, 2014

XBraid
Parallel Multigrid in Time

Ini$al'Space,Time'Guess'

Ti
m
e%

Space% Ti
m
e%

Space%

Converge%
Ti
m
e%

Space%

ut = �ux

Iterate%

V. A. Dobrev, R. D. Falgout, Tz. V. Kolev, N. A. Petersson, J. B. Schroder, U. M. Yang
Center for Applied Scientific Computing (CASC)
Lawrence Livermore National Laboratory

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Lab-
oratory under Contract DE-AC52-07NA27344. LLNL-SM-660398

ii

Copyright (c) 2013, Lawrence Livermore National Security, LLC. Produced at the Lawrence Livermore National Labo-
ratory. Written by the XBraid team. LLNL-CODE-660355. All rights reserved.

This file is part of XBraid. Please see the COPYRIGHT and LICENSE file for the copyright notice, disclaimer,
and the GNU Lesser General Public License. Email xbraid-support@llnl.gov for support.

XBraid is free software; you can redistribute it and/or modify it under the terms of the GNU General Public Li-
cense (as published by the Free Software Foundation) version 2.1 dated February 1999.

XBraid is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the IMPLIED
WARRANTY OF MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the terms and conditions of
the GNU General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this program; if not, write
to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 1307 USA

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

CONTENTS iii

Contents

1 Abstract 1

2 Introduction 2

2.1 Meaning of the name . 2

2.2 Overview of the XBraid Algorithm . 2

2.2.1 Two-Grid Algorithm . 6

2.2.2 Summary . 6

2.3 Overview of the XBraid Code . 7

2.3.1 Parallel decomposition and memory . 7

2.3.2 Cycling and relaxation strategies . 8

2.3.3 Overlapping communication and computation . 9

2.3.4 Configuring the XBraid Hierarchy . 9

2.3.5 Halting tolerance . 10

2.3.6 Heat equation example . 11

2.4 Citing XBraid . 12

2.5 Summary . 12

3 Example 12

4 Building XBraid 18

5 Compiling and running the examples 18

6 Coding Style 19

7 Using Doxygen 19

8 Regression Testing 20

9 Module Index 24

9.1 Modules . 24

10 Data Structure Index 25

10.1 Data Structures . 25

11 File Index 25

11.1 File List . 25

12 Module Documentation 25

12.1 User-written routines . 25

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

iv CONTENTS

12.1.1 Detailed Description . 26

12.1.2 Typedef Documentation . 26

12.2 User interface routines . 29

12.2.1 Detailed Description . 29

12.3 General Interface routines . 30

12.3.1 Detailed Description . 30

12.3.2 Typedef Documentation . 30

12.3.3 Function Documentation . 31

12.4 XBraid status routines . 38

12.4.1 Detailed Description . 39

12.4.2 Macro Definition Documentation . 39

12.4.3 Typedef Documentation . 39

12.4.4 Function Documentation . 39

12.5 XBraid test routines . 46

12.5.1 Detailed Description . 46

12.5.2 Function Documentation . 46

13 Data Structure Documentation 51

13.1 _braid_AccessStatus Struct Reference . 51

13.1.1 Detailed Description . 51

13.1.2 Field Documentation . 51

13.2 _braid_AccuracyHandle Struct Reference . 51

13.2.1 Detailed Description . 52

13.2.2 Field Documentation . 52

13.3 _braid_CoarsenRefStatus Struct Reference . 52

13.3.1 Detailed Description . 53

13.3.2 Field Documentation . 53

13.4 _braid_CommHandle Struct Reference . 53

13.4.1 Detailed Description . 53

13.4.2 Field Documentation . 53

13.5 _braid_Core Struct Reference . 54

13.5.1 Detailed Description . 55

13.5.2 Field Documentation . 55

13.6 _braid_Grid Struct Reference . 58

13.6.1 Detailed Description . 59

13.6.2 Field Documentation . 59

13.7 _braid_PhiStatus Struct Reference . 61

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

1 Abstract 1

13.7.1 Detailed Description . 61

13.7.2 Field Documentation . 61

14 File Documentation 61

14.1 _braid.h File Reference . 61

14.1.1 Detailed Description . 62

14.1.2 Macro Definition Documentation . 63

14.1.3 Function Documentation . 63

14.1.4 Variable Documentation . 66

14.2 braid.h File Reference . 66

14.2.1 Detailed Description . 67

14.3 braid_defs.h File Reference . 68

14.3.1 Detailed Description . 68

14.3.2 Macro Definition Documentation . 68

14.3.3 Typedef Documentation . 68

14.3.4 Variable Documentation . 69

14.4 braid_status.h File Reference . 69

14.4.1 Detailed Description . 70

14.5 braid_test.h File Reference . 70

14.5.1 Detailed Description . 70

14.6 util.h File Reference . 70

14.6.1 Detailed Description . 71

14.6.2 Function Documentation . 71

Index 72

1 Abstract

This package implements an optimal-scaling multigrid solver for the (non)linear systems that arise from the discretization
of problems with evolutionary behavior. Typically, solution algorithms for evolution equations are based on a time-
marching approach, solving sequentially for one time step after the other. Parallelism in these traditional time-integration
techniques is limited to spatial parallelism. However, current trends in computer architectures are leading towards
systems with more, but not faster, processors, i.e., clock speeds are stagnate. Therefore, faster overall runtimes must
come from greater parallelism. One approach to achieve parallelism in time is with multigrid, but extending classical
multigrid methods for elliptic operators to this setting is a significant achievement. In this software, we implement a non-
intrusive, optimal-scaling time-parallel method based on multigrid reduction techniques. The examples in the package
demonstrate optimality of our multigrid-reduction-in-time algorithm (MGRIT) for solving a variety of equations in two and
three spatial dimensions. These examples can also be used to show that MGRIT can achieve significant speedup in
comparison to sequential time marching on modern architectures.

It is strongly recommended that you also read Parallel Time Integration with Multigrid after
reading the Overview of the XBraid Algorithm. It is a more in depth discussion of the algorithm and associated ex-

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

https://computation-rnd.llnl.gov/linear_solvers/pubs/mgritPaper-2013.pdf

2 CONTENTS

periments.

2 Introduction

2.1 Meaning of the name

We chose the package name XBraid to stand for Time-Braid, where X is the first letter in the Greek work for time,
Chronos. The algorithm braids together time-grids of different granularity in order to create a multigrid method and
achieve parallelism in the time dimension.

2.2 Overview of the XBraid Algorithm

The goal of XBraid is to solve a problem faster than a traditional time marching algorithm. Instead of sequential time
marching, XBraid solves the problem iteratively by simultaneously updating a space-time solution guess over all time
values. The initial solution guess can be anything, even a random function over space-time. The iterative updates to
the solution guess are done by constructing a hierarchy of temporal grids, where the finest grid contains all of the time
values for the simulation. Each subsequent grid is a coarser grid with fewer time values. The coarsest grid has a trivial
number of time steps and can be quickly solved exactly. The effect is that solutions to the time marching problem on the
coarser (i.e., cheaper) grids can be used to correct the original finest grid solution. Analogous to spatial multigrid, the
coarse grid correction only corrects and accelerates convergence to the finest grid solution. The coarse grid does not
need to represent an accurate time discretization in its own right. Thus, a problem with many time steps (thousands,
tens of thousands or more) can be solved with 10 or 15 XBraid iterations, and the overall time to solution can be greatly
sped up. However, this is achieved at the cost of more computational resources.

To understand how XBraid differs from traditional time marching, consider the simple linear advection equation, ut =
−cux. The next figure depicts how one would typically evolve a solution here with sequential time stepping. The initial
condition is a wave, and this wave propagates sequentially across space as time increases.

Lawrence Livermore National Laboratory Internal Distribution Only

Parallel-in-Time Project Overview

1

1 sequential time step

Ti
m

e

Space

ut = �cux

!  Issue: sequential time integration bottleneck, new parallelism needed
•  Future performance gains will come through more concurrency

!  Project goal: parallelize time stepping with a scalable multigrid method

Lawrence Livermore National Laboratory Internal Distribution Only

Parallel-in-Time Project Overview

1

340 sequential time steps

Ti
m

e

Space

ut = �cux

!  Issue: sequential time integration bottleneck, new parallelism needed
•  Future performance gains will come through more concurrency

!  Project goal: parallelize time stepping with a scalable multigrid method

Lawrence Livermore National Laboratory Internal Distribution Only

Parallel-in-Time Project Overview

1

680 sequential time steps

Ti
m

e

Space

ut = �cux

!  Issue: sequential time integration bottleneck, new parallelism needed
•  Future performance gains will come through more concurrency

!  Project goal: parallelize time stepping with a scalable multigrid method

Lawrence Livermore National Laboratory Internal Distribution Only

Parallel-in-Time Project Overview

1

!  Issue: sequential time integration bottleneck, new parallelism needed
•  Future performance gains will come through more concurrency

!  Project goal: parallelize time stepping with a scalable multigrid method

1024 sequential time steps

Ti
m

e

Space

ut = �cux

Figure 1: Sequential time stepping.

XBraid instead begins with a solution guess over all of space-time, which for demonstration, we let be random. An
XBraid iteration does

1. Relaxation on the fine grid, i.e., the grid that contains all of the desired time values Relaxation is just a local
application of the time stepping scheme, e.g., backward Euler.

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

2.2 Overview of the XBraid Algorithm 3

2. Restriction to the first coarse grid, i.e., interpolate the problem to a grid that contains fewer time values, say every
second or every third time value.

3. Relaxation on the first coarse grid

4. Restriction to the second coarse grid and so on...

5. When a coarse grid of trivial size (say 2 time steps) is reached, it is solved exactly.

6. The solution is then interpolated from the coarsest grid to the finest grid

One XBraid iteration is called a cycle and these cycles continue until the solution is accurate enough. This is depicted
in the next figure, where only a few iterations are required for this simple problem.

restric'on!

prolonga'on.
(interpola+on)!

Itera&on)0!

Relaxa'on.on.fine.'me.grid.

Ti
m
e!

Space!

Relaxa'on.on.
first.coarse.grid.

Note:.
smaller.grid.
with.fewer.
'me.values.

ut = �cux

Itera&on)1!

Relaxa'on.on.fine.'me.grid.

Ti
m
e!

Space!

Relaxa'on.on.
first.coarse.grid.

ut = �cux

!!

restric'on!

prolonga'on.
(interpola+on)!

Itera&on)2!

Relaxa'on.on.fine.'me.grid.

Ti
m
e!

Space!

Relaxa'on.on.
first.coarse.grid.

Note:.
smaller.grid.
with.fewer.
'me.values.

ut = �cux

restric'on!

prolonga'on.
(interpola+on)!

Note:.
smaller.grid.
with.fewer.
'me.values.

Figure 2: XBraid iterations.

There are a few important points to make.

• The coarse time grids allow for global propagation of information across space-time with only one XBraid iteration.
This is visible in the above figure by observing how the solution is updated from iteration 0 to iteration 1.

• Using coarser (cheaper) grids to correct the fine grid is analogous to spatial multigrid.

• Only a few XBraid iterations are required to find the solution over 1024 time steps. Therefore if enough processors
are available to parallelize XBraid, we can see a speedup over traditional time stepping (more on this later).

• This is a simple example, with evenly space time steps. XBraid is structured to handle variable time step sizes
and adaptive time step sizes, and these features will be coming.

To firm up our understanding, let‘s do a little math. Assume that you have a general system of ordinary differential
equations (ODEs),

u′(t) = f (t,u(t)), u(0) = u0, t ∈ [0,T].

Next, let ti = iδ t, i = 0,1, ...,N be a temporal mesh with spacing δ t = T/N, and ui be an approximation to u(ti). A
general one-step time discretization is now given by

u0 =g0

ui =Φi(ui−1)+gi, i = 1,2, ...,N.

Traditional time marching would first solve for i = 1, then solve for i = 2, and so on. For linear time propagators {Φi},
this can also be expressed as applying a direct solver (a forward solve) to the following system:

Au≡




I
−Φ1 I

. . .
. . .
−ΦN I







u0
u1
...

uN


=




g0
g1
...

gN


≡ g

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

4 CONTENTS

or
Au = g.

This process is optimal and O(N), but it is sequential. XBraid achieves parallelism in time by replacing this sequential
solve with an optimal multigrid reduction iterative method 1 applied to only the time dimension. This approach is

• nonintrusive, in that it coarsens only in time and the user defines Φ. Thus, users can continue using existing time
stepping codes by wrapping them into our framework.

• optimal and O(N), but O(N) with a higher constant than time stepping. Thus with enough computational resources,
XBraid will outperform sequential time stepping.

• highly parallel

We now describe the two-grid process in more detail, with the multilevel analogue being a recursive application of the
process. We also assume that Φ is constant for notational simplicity. XBraid coarsens in the time dimension with factor
m > 1 to yield a coarse time grid with N∆ = N/m points and time step ∆T = mδ t. The corresponding coarse grid
problem,

A∆ =




I
−Φ∆ I

. . .
. . .
−Φ∆ I


 ,

is obtained by defining coarse grid propagators {Φ∆} which are at least as cheap to apply as the fine scale propagators
{Φ}. The matrix A∆ has fewer rows and columns than A, e.g., if we are coarsening in time by 2, A∆ has one half as
many rows and columns.

This coarse time grid induces a partition of the fine grid into C-points (associated with coarse grid points) and F-points,
as visualized next. C-points exist on both the fine and coarse time grid, but F-points exist only on the fine time scale.

Lawrence Livermore National Laboratory LLNL-PRES-654654

!  Relaxation is highly parallel
•  Alternates between F-points and C-points
•  F-point relaxation = integration over each coarse time interval

 t0 t1 t2 t3
…

T0 T1

δt

ΔT = mδt

tN

F-point (fine grid only)
C-point (form coarse grid)

6

F-relaxation

!  Coarse-grid Petrov-Galerkin system gives exact solution at C-points

!  Replace impractical with , a rediscretization with

Au = g

A =

0
BBB@

I
�� I

. . .
. . .

�� I

1
CCCA

Fine System

A� =

0
BBB@

I
��m I

. . .
. . .

��m I

1
CCCA

Coarse Petrov-Galerkin System

���m �T

A�u� = g�

Every multigrid algorithm requires a relaxation method and an approach to transfer values between grids. Our relaxation
scheme alternates between so-called F-relaxation and C-relaxation as illustrated next. F-relaxation updates the F-
point values {u j} on interval (Ti,Ti+1) by simply propagating the C-point value umi across the interval using the time
propagator {Φ}. While this is a sequential process, each F-point interval update is independent from the others and
can be computed in parallel. Similarly, C-relaxation updates the C-point value umi based on the F-point value umi−1
and these updates can also be computed in parallel. This approach to relaxation can be thought of as line relaxation in
space in that the residual is set to 0 for an entire time step.

The F updates are done simultaneously in parallel, as depicted next.

Lawrence Livermore National Laboratory Internal Distribution Only

1.  FCF relaxation (highly parallel)

•  Update all F-points using time propagator �

The simplified two-grid method
updates a solution guess with

t0 t1 t2 t3
…

T0 T1

δt

ΔT = mδt

tN

F-point (fine grid only)
C-point (form coarse grid)

Update all F-point intervals in parallel, using , the time propagator
Figure 3: Update all F-point intervals in parallel, using the time propagator Φ.

Following the F sweep, the C updates are also done simultaneously in parallel, as depicted next.
1 Ries, Manfred, Ulrich Trottenberg, and Gerd Winter. "A note on MGR methods." Linear Algebra and its Applications 49 (1983): 1-26.

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

2.2 Overview of the XBraid Algorithm 5

Lawrence Livermore National Laboratory Internal Distribution Only

1.  FCF relaxation

•  Update all C-points using time propagator �

The simplified two-grid method
updates a solution guess with

t0 t1 t2 t3
…

T0 T1

δt

ΔT = mδt

tN

F-point (fine grid only)
C-point (form coarse grid)

Update all C-points in parallel, using , the time propagator
Figure 4: Update all C-points in parallel, using the time propagator Φ.

In general, FCF- and F-relaxation will refer to the relaxation methods used in XBraid. We can say

• FCF- or F-relaxation is highly parallel.

• But, a sequential component exists equaling the number of F-points between two C-points.

• XBraid uses regular coarsening factors, i.e., the spacing of C-points happens every m points.

After relaxation, comes forming the coarse grid error correction. To move quantities to the coarse grid, we use the
restriction operator R which simply injects values at C-points from the fine grid to the coarse grid,

R =




I
0
...
0

I
0
...
0

. . .




T

.

The spacing between each I is m−1 block rows. While injection is simple, XBraid always does an F-relaxation sweep
before the application of R, which is equivalent to using the transpose of harmonic interpolation for restriction (see
Parallel Time Integration with Multigrid).

To define the coarse grid equations, we apply the Full Approximation Scheme (FAS) method, which is a nonlinear
version of multigrid. This is to accommodate the general case where f is a nonlinear function. In FAS, the solution
guess and residual (i.e., u,g−Au) are restricted. This is in contrast to linear multigrid which typically restricts only the
residual equation to the coarse grid. This algorithmic change allows for the solution of general nonlinear problems. For
more details, see PDF by Van Henson for a good introduction to FAS. However, FAS was originally invented by Achi
Brandt.

A central question in applying FAS is how to form the coarse grid matrix A∆, which in turn asks how to define the coarse
grid time stepper Φ∆. One of the simplest choices (and one frequently used in practice) is to let Φ∆ simply be Φ but
with the coarse time step size ∆T = mδ t. For example, if Φ = (I− δ tA)−1 for some backward Euler scheme, then
Φ∆ = (I−mδ tA)−1 would be one choice.

With a Φ∆ defined, the coarse grid equation

A∆(v∆) = A∆(u∆)+ r∆

is then solved. Finally, FAS defines a coarse grid error approximation e∆ = v∆−u∆, which is interpolated with PΦ back
to the fine grid and added to the current solution guess. Interpolation is equivalent to injecting the coarse grid to the
C-points on the fine grid, followed by an F-relaxation sweep (i.e., it is equivalent to harmonic interpolation, as mentioned

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

https://computation-rnd.llnl.gov/linear_solvers/pubs/mgritPaper-2013.pdf
http://computation.llnl.gov/casc/people/henson/postscript/UCRL_JC_150259.pdf

6 CONTENTS

above about restriction). That is,

PΦ =




I
Φ

Φ2

...
Φm−1

I
Φ

Φ2

...
Φm−1

. . .




,

where m is the coarsening factor. See Two-Grid Algorithm for a concise description of the FAS algorithm for MGRIT.

2.2.1 Two-Grid Algorithm

The two-grid FAS process is captured with this algorithm. Using a recursive coarse grid solve (i.e., step 3 becomes a
recursive call) makes the process multilevel. Halting is done based on a residual tolerance. If the operator is linear, this
FAS cycle is equivalent to standard linear multigrid. Note that we represent A as a function below, whereas the above
notation was simplified for the linear case.

1. Relax on A(u) = g using FCF-relaxation

2. Restrict the fine grid approximation and its residual:

u∆← Ru, r∆← R(g−A(u),

which is equivalent to updating each individual time step according to

u∆,i← umi, r∆,i← gmi−A(u)mi for i = 0, ...,N∆.

3. Solve A∆(v∆) = A∆(u∆)+ r∆

4. Compute the coarse grid error approximation: e∆ = v∆−u∆

5. Correct: u← u+Pe∆

This is equivalent to updating each individual time step by adding the error to the values of u at the C-points:

umi = umi + e∆,i,

followed by an F-relaxation sweep applied to u.

2.2.2 Summary

In summary, a few points are

• XBraid is an iterative solver for the global space-time problem.

• The user defines the time stepping routine Φ and can wrap existing code to accomplish this.

• XBraid convergence will depend heavily on how well Φ∆ approximates Φm, that is how well a time step size of
mδ t = ∆T will approximate m applications of the same time integrator for a time step size of δ t. This is a subject
of research, but this approximation need not capture fine scale behavior, which is instead captured by relaxation
on the fine grid.

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

2.3 Overview of the XBraid Code 7

• The coarsest grid is solved exactly, i.e., sequentially, which can be a bottleneck for two-level methods like
Parareal, 2 but not for a multilevel scheme like XBraid where the coarsest grid is of trivial size.

• By forming the coarse grid to have the same sparsity structure and time stepper as the fine grid, the algorithm
can recur easily and efficiently.

• Interpolation is ideal or exact, in that an application of interpolation leaves a zero residual at all F-points.

• The process is applied recursively until a trivially sized temporal grid is reached, e.g., 2 or 3 time points. Thus,
the coarsening rate m determines how many levels there are in the hierarchy. For instance in this figure, a 3 level
hierarchy is shown. Three levels are chosen because there are six time points, m = 2 and m2 < 6 ≤ m3. If the
coarsening rate had been m = 4 then there would only be two levels because, there would be no more points to
coarsen!

Lawrence Livermore National Laboratory Internal Distribution Only

Flexible framework: Adaptivity in time

F-point (fine grid only)
C-point (coarse grid)

!  In Phi, user returns rfactor, indicating whether to subdivide the interval

!  Example time domain

Level 0
Level 1
Level 2

This aspect is a work in progress and is only partially implemented.
By default, XBraid will subdivide the time domain into evenly sized time steps. XBraid is structured to handle
variable time step sizes and adaptive time step sizes, and these features are coming.

2.3 Overview of the XBraid Code

XBraid is designed to run in conjunction with an existing application code that can be wrapped per our interface. This
application code will implement some time marching simulation like fluid flow. Essentially, the user has to take their
application code and extract a stand-alone time-stepping function Φ that can evolve a solution from one time value
to another, regardless of time step size. After this is done, the XBraid code takes care of the parallelism in the time
dimension.

XBraid

• is written in C and can easily interface with Fortran and C++

• uses MPI for parallelism

• self documents through comments in the source code and through ∗.md files

• functions and structures are prefixed by braid

– User routines are prefixed by braid_

– Developer routines are prefixed by _braid_

2.3.1 Parallel decomposition and memory

• XBraid decomposes the problem in parallel as depicted next. As you can see, traditional time stepping only stores
one time step at a time, but only enjoys a spatial data decomposition and spatial parallelism. On the other hand,
XBraid stores multiple time steps simultaneously and each processor holds a space-time chunk reflecting both
the spatial and temporal parallelism.

• XBraid only handles temporal parallelism and is agnostic to the spatial decomposition. See braid_Split-
Commworld. Each processor owns a certain number of CF intervals of points. In the following figure, processor
1 and processor 2 each own 2 CF intervals. XBraid distributes intervals evenly on the finest grid.

2 Lions, J., Yvon Maday, and Gabriel Turinici. "A”parareal”in time discretization of PDE’s." Comptes Rendus de l’Academie des Sciences Series I
Mathematics 332.7 (2001): 661-668.

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

8 CONTENTS

Serial'(me'stepping

'' ''''

x'(space)

t'(
(m

e)

Mul(grid5in5(me

'' ''''

'' ''''

'' ''''

'' ''''

x'(space)

t'(
(m

e)

Lawrence Livermore National Laboratory LLNL-PRES-654654

!  Relaxation is highly parallel
•  Alternates between F-points and C-points
•  F-point relaxation = integration over each coarse time interval

 t0 t1 t2 t3
…

T0 T1

δt

ΔT = mδt

tN

F-point (fine grid only)
C-point (form coarse grid)

6

F-relaxation

!  Coarse-grid Petrov-Galerkin system gives exact solution at C-points

!  Replace impractical with , a rediscretization with

Au = g

A =

0
BBB@

I
�� I

. . .
. . .

�� I

1
CCCA

Fine System

A� =

0
BBB@

I
��m I

. . .
. . .

��m I

1
CCCA

Coarse Petrov-Galerkin System

���m �T

A�u� = g�

Processor'0' Processor'1'

• XBraid increases the parallelism significantly, but now several time steps need to be stored, requiring more
memory. XBraid employs two strategies to address the increased memory costs.

– First, one need not solve the whole problem at once. Storing only one space-time slab is advisable. That
is, solve for as many time steps (say k time steps) as you have available memory for. Then move on to the
next k time steps.

– Second, XBraid only stores the C-points. Whenever an F-point is needed, it is generated by F-relaxation.
More precisely, we only store the red C-point time values in the previous figure. Coarsening is usually
aggressive with m = 8,16,32, ..., so the storage requirements of XBraid are significantly reduced when
compared to storing all of the time values.

2.3.2 Cycling and relaxation strategies

There are two main cycling strategies available in XBraid, F-and V-cycles. These two cycles differ in how often and the
order in which coarse levels are visited. A V-cycle is depicted next, and is a simple recursive application of the Two-Grid
Algorithm.

V"cycle'

F"cycle'

An F-cycle visits coarse grids more frequently and in a different order. Essentially, an F-cycle uses a V-cycle as the
post-smoother, which is an expensive choice for relaxation. But, this extra work gives you a closer approximation to a
two-grid cycle, and a faster convergence rate at the extra expense of more work. The effectiveness of a V-cycle as a
relaxation scheme can be seen in Figure 2, where one V-cycle globally propagates and smoothes the error. The cycling
strategy of an F-cycle is depicted next.

Next, we make a few points about F- versus V-cycles.

• One V-cycle iteration is cheaper than one F-cycle iteration.

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

2.3 Overview of the XBraid Code 9

V"cycle'

F"cycle'

• But, F-cycles often converge more quickly. For some test cases, this difference can be quite large. The cycle
choice for the best time to solution will be problem dependent. See Heat equation example for a case study of
cycling strategies.

The number of FC relaxation sweeps is another important algorithmic setting. Note that at least one F-relaxation sweep
is always done on a level. A few summary points about relaxation are as follows.

• Using FCF (or even FCFCF, FCFCFCF) relaxation, corresponding to passing braid_SetNRelax a value of 1, 2 or
3 respectively, will result in an XBraid cycle that converges more quickly as the number of relaxations grows.

• But as the number of relaxations grows, each XBraid cycle becomes more expensive. The optimal relaxation
strategy for the best time to solution will be problem dependent.

• However, a good first step is to try FCF on all levels (i.e., braid_SetNRelax(core, -1, 1)).

• A common optimization is to first set FCF on all levels (i.e., braid_setnrelax(core, -1, 1)), but then overwrite the
FCF option on level 0 so that only F-relaxation is done on level 0, (i.e., braid_setnrelax(core, 0, 1)). This strategy
can work well with F-cycles.

• See Heat equation example for a case study of relaxation strategies.

Last, Parallel Time Integration with Multigrid has a more in depth case study of cycling and relax-
ation strategies

2.3.3 Overlapping communication and computation

XBraid effectively overlaps communication and computation. The main computational kernel of XBraid is one relaxation
sweep touching all the CF intervals. At the start of a relaxation sweep, each process first posts a non-blocking receive
at its left-most point. It then carries out F-relaxation in each interval, starting with the right-most interval to send the
data to the neighboring process as soon as possible. If each process has multiple CF intervals at this XBraid level, the
strategy allows for complete overlap.

2)#Compute#and#send#

•  User#defines#two#objects:#
–  App#and#Vector)

•  User#also#writes#several#wrapper#rou:nes:#
–  Phi,#Init,#Clone,#Free,#Sum,#Dot,#Write,#BufPack,#BufUnpack)

–  Coarsen,#Restrict#(op:onal,#for#spa:al#coarsening))

•  Phi(app,)tstart,)tstop,)accuracy,)u,)&rfactor))
–  Advances#vector#u#from#:me#tstart#to#tstop)

–  Return#value#rfactor#specifies#a#requested#temporal#refinement#factor#

•  Code#stores#only#CCpoints#to#minimize#storage#

•  Consider#relaxa:on#over#a#processor’s#por:on#of#the#:me#interval#
–  Each#proc#starts#with#rightCmost#interval#to#overlap#comm/comp#

Flexible#framework:#nonCintrusive#

1)#Post#receive#

2.3.4 Configuring the XBraid Hierarchy

Some of the more basic XBraid function calls allow you to control aspects discussed here.

• braid_SetFMG: switches between using F- and V-cycles.

• braid_SetMaxIter: sets the maximum number of XBraid iterations

• braid_SetCFactor: sets the coarsening factor for any (or all levels)

• braid_SetNRelax: sets the number of CF-relaxation sweeps for any (or all levels)

• braid_SetRelTol, braid_SetAbsTol: sets the stopping tolerance

• braid_SetMinCoarse: sets the minimum possible coarse grid size

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

https://computation-rnd.llnl.gov/linear_solvers/pubs/mgritPaper-2013.pdf

10 CONTENTS

• braid_SetMaxLevels: sets the maximum number of levels in the XBraid hierarchy

2.3.5 Halting tolerance

Another important configuration aspect regards setting a residual halting tolerance. Setting a tolerance involves these
three XBraid options:

1. braid_PtFcnSpatialNorm
This user-defined function carries out a spatial norm by taking the norm of a braid_Vector. A common choice is
the standard Eucliden norm (2-norm), but many other choices are possible, such as an L2-norm based on a finite
element space.

2. braid_SetTemporalNorm
This option determines how to obtain a global space-time residual norm. That is, this decides how to combine
the spatial norms returned by braid_PtFcnSpatialNorm at each time step to obtain a global norm over space and
time. It is this global norm that then controls halting.
There are three options for setting the tnorm value passed to braid_SetTemporalNorm. We let the summation
index i be over all C-point values on the fine time grid, k refer to the current XBraid iteration, r be residual values,
space_time norms be a norm over the entire space-time domain and spatial_norm be the user-defined spatial
norm from braid_PtFcnSpatialNorm. Thus, ri is the residual at the ith C-point, and r(k) is the residual at the kth
XBraid iteration. The three options are then defined as,

• tnorm=1: One-norm summation of spatial norms

‖r(k)‖space_time = Σi‖r(k)i ‖spatial_norm

If braid_PtFcnSpatialNorm is the one-norm over space, then this is equivalent to the one-norm of the global
space-time residual vector.

• tnorm=2: Two-norm summation of spatial norms

‖r(k)‖space_time =
(

Σi‖r(k)i ‖2
spatial_norm

)1/2

If braid_PtFcnSpatialNorm is the Euclidean norm (two-norm) over space, then this is equivalent to the
Euclidean-norm of the global space-time residual vector.

• tnorm=3: Infinity-norm combination of spatial norms

‖r(k)‖space_time = max
i
‖r(k)i ‖spatial_norm

If braid_PtFcnSpatialNorm is the infinity-norm over space, then this is equivalent to the infinity-norm of the
global space-time residual vector.

The default choice is tnorm=2

3. braid_SetAbsTol, braid_SetRelTol

• If an absolute tolerance is used, then
‖r(k)‖space_time < tol

defines when to halt.

• If a relative tolerance is used, then
‖r(k)‖space_time
‖r(0)‖space_time

< tol

defines when to halt. That is, the current kth residual is scaled by the initial residual before comparison to
the halting tolerance. This is similar to typical relative residual halting tolerances used in spatial multigrid,
but can be a dangerous choice in this setting.

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

2.3 Overview of the XBraid Code 11

Care should be practiced when choosing a halting tolerance. For instance, if a relative tolerance is used, then issues
can arise when the initial guess is zero for large numbers of time steps. Taking the case where the initial guess (defined
by braid_PtFcnInit) is 0 for all time values t > 0, the initial residual norm will essentially only be nonzero at the first time
value,

‖r(0)‖space_time ≈ ‖r
(k)
1 ‖spatial_norm

This will skew the relative halting tolerance, especially if the number of time steps increases, but the initial residual norm
does not.

A better strategy is to choose an absolute tolerance that takes your space-time domain size into account, as in Section
Heat equation example, or to use an infinity-norm temporal norm option.

2.3.6 Heat equation example

Here is some experimental data for the 2D heat equation, ut = uxx +uyy generated by examples/drive-02. The problem

setup is as follows.

• Backwards Euler is used as the time stepper.

• We used a Linux cluster with 4 cores per node, a Sandybridge Intel chipset, and a fast Infiniband interconnect.

• The space-time problem size was 1292×16,192 over the unit cube [0,1]× [0,1]× [0,1] .

• The coarsening factor was m = 16 on the finest level and m = 2 on coarser levels.

• Since 16 processors optimized the serial time stepping approach, 16 processors in space are also used for
the XBraid experiments. So for instance 512 processrs in the plot corresponds to 16 processors in space and
32 processors in time, 16 ∗ 32 = 512. Thus, each processor owns a space-time hypercube of (1292/16)×
(16,192/32). See Parallel decomposition and memory for a depiction of how XBraid breaks the problem up.

• Various relaxation and V and F cycling strategies are experimented with.

– V-cycle, FCF denotes V-cycles and FCF-relaxation on each level.

– V-cycle, F-FCF denotes V-cycles and F-relaxation on the finest level and FCF-relaxation on all coarser
levels.

– F-cycle, F denotes F-cycles and F-relaxation on each level.

• The initial guess at time values for t > 0 is zero, which is typical.

• The halting tolerance corresponds to a discrete L2-norm and was

tol =
10−8

√
(hx)2ht

,

where hx and ht are the spatial and temporal grid spacings, respectively.
This corresponds to passing tol to braid_SetAbsTol, passing 2 to braid_SetTemporalNorm and defining braid_-
PtFcnSpatialNorm to be the standard Euclidean 2-norm. All together, this appropriately scales the space-time
residual in way that is relative to the number of space-time grid points (i.e., it approximates the L2-norm).

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

12 CONTENTS

Regarding the performance, we can say

• The best speedup is 10x and this would grow if more processors were available.

• Although not shown, the iteration counts here are about 10-15 XBraid iterations. See Parallel Time
Integration with Multigrid for the exact iteration counts.

• At smaller core counts, serial time stepping is faster. But at about 256 processors, there is a crossover and
XBraid is faster.

• You can see the impact of the cycling and relaxation strategies discussed in Cycling and relaxation strategies.
For instance, even though V-cycle, F-FCF is a weaker relaxation strategy than V-cycle, FCF (i.e., the XBraid
convergence is slower), V-cycle, F-FCF has a faster time to solution than V-cycle, FCF because each cycle is
cheaper.

• In general, one level of aggressive coarsening (here by a factor 16) followed by slower coarsening was found to
be best on this machine.

Achieving the best speedup can require some tuning, and it is recommended to read Parallel Time
Integration with Multigrid where this 2D heat equation example is explored in much more detail.

2.4 Citing XBraid

To cite XBraid, please state in your text the version number from the VERSION file, and please cite the project website
in your bibliography as

[1] XBraid: Parallel multigrid in time. http://llnl.gov/casc/xbraid.

The corresponding BibTex entry is

@misc{xbraid-package,
title = {{XB}raid: Parallel multigrid in time},
howpublished = {\url{http://llnl.gov/casc/xbraid}}
}

2.5 Summary

• XBraid applies multigrid to the time dimension.

– This exposes concurrency in the time dimension.

– The potential for speedup is large, 10x, 100x, ...

• This is a non-intrusive approach, with an unchanged time discretization defined by user.

• Parallel time integration is only useful beyond some scale. This is evidenced by the experimental results below.
For smaller numbers of cores sequential time stepping is faster, but at larger core counts XBraid is much faster.

• The more time steps that you can parallelize over, the better your speedup will be.

• XBraid is optimal for a variety of parabolic problems (see the examples directory).

3 Example

A Simple Example

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

https://computation-rnd.llnl.gov/linear_solvers/pubs/mgritPaper-2013.pdf
https://computation-rnd.llnl.gov/linear_solvers/pubs/mgritPaper-2013.pdf
https://computation-rnd.llnl.gov/linear_solvers/pubs/mgritPaper-2013.pdf
https://computation-rnd.llnl.gov/linear_solvers/pubs/mgritPaper-2013.pdf
http://llnl.gov/casc/xbraid

3 Example 13

User Defined Structures and Wrappers

As mentioned, the user must wrap their existing time stepping routine per the XBraid interface. To do this, the user must
define two data structures and some wrapper routines. To make the idea more concrete, we now give these function
definitions from examples/drive-01, which implements a scalar ODE, ut = λu.

The two data structures are:

1. App: This holds a wide variety of information and is global in that it is passed to every function. This structure
holds everything that the user will need to carry out a simulation. Here, this is just the global MPI communicator
and few values describing the temporal domain.
typedef struct _braid_App_struct
{

MPI_Comm comm;
double tstart;
double tstop;
int ntime;

} my_App;

2. Vector: this defines (roughly) a state vector at a certain time value. It could also contain any other information
related to this vector which is needed to evolve the vector to the next time value, like mesh information. Here, the
vector is just a scalar double.
typedef struct _braid_Vector_struct
{

double value;

} my_Vector;

The user must also define a few wrapper routines. Note, that the app structure is the first argument to every function.

1. Phi: This function tells XBraid how to take a time step, and is the core user routine. The user must advance the
vector u from time tstart to time tstop. Note how the time values are given to the user through the status structure
and associated Get routines. The rfactor_ptr parameter is an advanced topic not used here.
Here advancing the solution just involves the scalar λ .
Importantly, the gi function (from Overview of the XBraid Algorithm) must be incorporated into Phi, so that
Φ(ui)→ ui+1
int
my_Phi(braid_App app,

braid_Vector u,
braid_PhiStatus status)

{
double tstart; /* current time */
double tstop; /* evolve to this time*/
braid_PhiStatusGetTstartTstop(status, &tstart, &tstop);

/* On the finest grid, each value is half the previous value */
(u->value) = pow(0.5, tstop-tstart)*(u->value);

/* Zero rhs for now */
(u->value) += 0.0;

/* no refinement */
braid_PhiStatusSetRFactor(status, 1);

return 0;
}

2. Init: This function tells XBraid how to initialize a vector at time t. Here that is just allocating and setting a scalar
on the heap.

int
my_Init(braid_App app,

double t,
braid_Vector *u_ptr)

{
my_Vector *u;

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

14 CONTENTS

u = (my_Vector *) malloc(sizeof(my_Vector));
if (t == 0.0)
{

/* Initial guess */
(u->value) = 1.0;

}
else
{

/* Random between 0 and 1 */
(u->value) = ((double)rand()) / RAND_MAX;

}

*u_ptr = u;

return 0;
}

3. Clone: This function tells XBraid how to clone a vector into a new vector.
int
my_Clone(braid_App app,

braid_Vector u,
braid_Vector *v_ptr)

{
my_Vector *v;

v = (my_Vector *) malloc(sizeof(my_Vector));
(v->value) = (u->value);

*v_ptr = v;

return 0;
}

4. Free: This function tells XBraid how to free a vector.
int
my_Free(braid_App app,

braid_Vector u)
{

free(u);

return 0;
}

5. Sum: This function tells XBraid how to sum two vectors (AXPY operation).
int
my_Sum(braid_App app,

double alpha,
braid_Vector x,
double beta,
braid_Vector y)

{
(y->value) = alpha*(x->value) + beta*(y->value);

return 0;
}

6. SpatialNorm: This function tells XBraid how to take the norm of a braid_Vector and is used for halting. This norm
is only over space. A common norm choice is the standard Euclidean norm, but many other choices are possible,
such as an L2-norm based on a finite element space. The norm choice should be based on what makes sense
for you problem. How to accumulate spatial norm values to obtain a global space-time residual norm for halting
decisions is controlled by braid_SetTemporalNorm.

int
my_SpatialNorm(braid_App app,

braid_Vector u,
double *norm_ptr)

{
double dot;

dot = (u->value)*(u->value);

*norm_ptr = sqrt(dot);

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

3 Example 15

return 0;
}

7. Access: This function allows the user access to XBraid and the current solution vector at time t. This is most
commonly used to print solution(s) to screen, file, etc... The user defines what is appropriate output. Notice how
you are told the time value t of the vector u and even more information in astatus. This lets you tailor the output
to only certain time values at certain XBraid iterations. Querying astatus for such information is done through
braid_AccessStatusGet∗∗(..) routines.

The frequency of the calls to access is controlled through braid_SetAccessLevel. For instance, if access_level
is set to 2, then access is called every XBraid iteration and on every XBraid level. In this case, querying astatus
to determine the current XBraid level and iteration will be useful. This scenario allows for even more detailed
tracking of the simulation.

Eventually, this routine will allow for broader access to XBraid and computational steering.

See examples/drive-02 and examples/drive-04 for more advanced uses of the access function. Drive-04 uses
access to write solution vectors to a GLVIS visualization port, and examples/drive-02 uses access to write to .vtu
files.

int
my_Access(braid_App app,

braid_Vector u,
braid_AccessStatus astatus)

{
MPI_Comm comm = (app->comm);
double tstart = (app->tstart);
double tstop = (app->tstop);
int ntime = (app->ntime);
int index, myid;
char filename[255];
FILE *file;
double t;

braid_AccessStatusGetT(astatus, &t);
index = ((t-tstart) / ((tstop-tstart)/ntime) + 0.1);

MPI_Comm_rank(comm, &myid);

sprintf(filename, "%s.%07d.%05d", "drive-01.out", index, myid);
file = fopen(filename, "w");
fprintf(file, "%.14e\n", (u->value));
fflush(file);
fclose(file);

return 0;
}

8. BufSize, BufPack, BufUnpack: These three routines tell XBraid how to communicate vectors between proces-
sors. BufPack packs a vector into a void ∗ buffer for MPI and then BufUnPack unpacks it from void ∗ to
vector. Here doing that for a scalar is trivial. BufSize computes the upper bound for the size of an arbitrary vector.

Note how BufPack also returns a size pointer. This size pointer should be the exact number of bytes packed,
while BufSize should provide only an upper-bound on a possible buffer size. This flexibility allows for variable
spatial grid sizes to result in smaller messages sent when appropriate. To avoid MPI issues, it is very impor-
tant that BufSize be pessimistic, provide an upper bound, and return the same value across processors.

In general, the buffer should be self-contained. The receiving processor should be able to pull all necessary
information from the buffer in order to properly interpret and unpack the buffer.

int
my_BufSize(braid_App app,

int *size_ptr)

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

16 CONTENTS

{

*size_ptr = sizeof(double);
return 0;

}

int
my_BufPack(braid_App app,

braid_Vector u,
void *buffer,
braid_Int *size_ptr)

{
double *dbuffer = buffer;

dbuffer[0] = (u->value);

*size_ptr = sizeof(double);

return 0;
}

int
my_BufUnpack(braid_App app,

void *buffer,
braid_Vector *u_ptr)

{
double *dbuffer = buffer;
my_Vector *u;

u = (my_Vector *) malloc(sizeof(my_Vector));
(u->value) = dbuffer[0];

*u_ptr = u;

return 0;
}

9. Coarsen, Restrict (optional): These are advanced options that allow for coarsening in space while you coarsen
in time. This is useful for maintaining stable explicit schemes on coarse time scales and is not needed here. See
for instance examples/drive-04 and examples/drive-05 which use these routines.
These functions allow you vary the spatial mesh size on XBraid levels as depicted here where the spatial and
temporal grid sizes are halved every level.

ht, hx

2ht, 2hx

4ht, 4hx

8ht, 8hx

10. Adaptive and variable time stepping is in the works to be implemented. The rfactor parameter in Phi will allow
this.

Running XBraid

A typical flow of events in the main function is to first initialize the app structure.

/* set up app structure */
app = (my_App *) malloc(sizeof(my_App));
(app->comm) = comm;
(app->tstart) = tstart;
(app->tstop) = tstop;
(app->ntime) = ntime;

Then, the data structure definitions and wrapper routines are passed to XBraid. The core structure is used by XBraid
for internal data structures.

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

3 Example 17

braid_Core core;
braid_Init(MPI_COMM_WORLD, comm, tstart, tstop, ntime, app,

my_Phi, my_Init, my_Clone, my_Free, my_Sum, my_SpatialNorm,
my_Access, my_BufSize, my_BufPack, my_BufUnpack, &core);

Then, XBraid options are set.

braid_SetPrintLevel(core, 1);
braid_SetMaxLevels(core, max_levels);
braid_SetNRelax(core, -1, nrelax);
braid_SetAbsTol(core, tol);
braid_SetCFactor(core, -1, cfactor);
braid_SetMaxIter(core, max_iter);

Then, the simulation is run.

braid_Drive(core);

Then, we clean up.

braid_Destroy(core);

Finally, to run drive-01, type

drive-01 -ml 5

This will run drive-01. See examples/drive-0∗ for more extensive examples.

Testing XBraid

The best overall test for XBraid, is to set the maximum number of levels to 1 (see braid_SetMaxLevels) which will carry
out a sequential time stepping test. Take the output given to you by your Access function and compare it to output from
a non-XBraid run. Is everything OK? Once this is complete, repeat for multilevel XBraid, and check that the solution is
correct (that is, it matches a serial run to within tolerance).

At a lower level, to do sanity checks of your data structures and wrapper routines, there are also XBraid test functions,
which can be easily run. The test routines also take as arguments the app structure, spatial communicator comm_x,
a stream like stdout for test output and a time step size to test dt. After these arguments, function pointers to wrapper
routines are the rest of the arguments. Some of the tests can return a boolean variable to indicate correctness.

/* Test init(), access(), free() */
braid_TestInitAccess(app, comm_x, stdout, dt, my_Init, my_Access, my_Free);

/* Test clone() */
braid_TestClone(app, comm_x, stdout, dt, my_Init, my_Access, my_Free, my_Clone);

/* Test sum() */
braid_TestSum(app, comm_x, stdout, dt, my_Init, my_Access, my_Free, my_Clone, my_Sum);

/* Test spatialnorm() */
correct = braid_TestSpatialNorm(app, comm_x, stdout, dt, my_Init, my_Free, my_Clone,

my_Sum, my_SpatialNorm);

/* Test bufsize(), bufpack(), bufunpack() */
correct = braid_TestBuf(app, comm_x, stdout, dt, my_Init, my_Free, my_Sum, my_SpatialNorm,

my_BufSize, my_BufPack, my_BufUnpack);

/* Test coarsen and refine */
correct = braid_TestCoarsenRefine(app, comm_x, stdout, 0.0, dt, 2*dt, my_Init,

my_Access, my_Free, my_Clone, my_Sum, my_SpatialNorm,
my_CoarsenInjection, my_Refine);

correct = braid_TestCoarsenRefine(app, comm_x, stdout, 0.0, dt, 2*dt, my_Init,
my_Access, my_Free, my_Clone, my_Sum, my_SpatialNorm,
my_CoarsenBilinear, my_Refine);

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

18 CONTENTS

4 Building XBraid

• Copyright information and licensing restrictions can be found in the files COPYRIGHT and LICENSE.

• To specify the compilers, flags and options for your machine, edit makefile.inc. For now, we keep it simple and
avoid using configure or cmake.

• To make the library, libbraid.a,
$ make

• To make the examples
$ make all

• The makefile lets you pass some parameters like debug with
$ make debug=yes

or
$ make all debug=yes

It would also be easy to add additional parameters, e.g., to compile with insure.

• To set compilers and library locations, look in makefile.inc where you can set up an option for your machine to
define simple stuff like
CC = mpicc
MPICC = mpicc
MPICXX = mpiCC
LFLAGS = -lm

5 Compiling and running the examples

Type

drive-0* -help

for instructions on how to run any driver.

To run the examples, type

mpirun -np 4 drive-* [args]

1. drive-01 is the simplest example. It implements a scalar ODE and can be compiled and run with no outside
dependencies.

2. drive-02 implements the 2D heat equation on a regular grid. You must have hypre installed and these variables
in examples/Makefile set correctly

HYPRE_DIR = ../../linear_solvers/hypre
HYPRE_FLAGS = -I$(HYPRE_DIR)/include
HYPRE_LIB = -L$(HYPRE_DIR)/lib -lHYPRE

3. drive-03 implements the 3D heat equation on a regular grid, and assumes hypre is installed just like drive-02.

4. drive-05 implements the 2D heat equation on a regular grid, but it uses spatial coarsening. This allows you to
use explicit time stepping on each Braid level, regardless of time step size. It assumes hypre is installed just
like drive-02.

5. drive-04 is a sophisticated test bed for various PDEs, mostly parabolic. It relies on the mfem package to create
general finite element discretizations for the spatial problem. Other packages must be installed in this order.

• Unpack and install Metis

• Unpack and install hypre

• Unpack and install mfem. Make the serial version of mfem first by only typing make. Then make sure to
set these variables correctly in the mfem Makefile:

USE_METIS_5 = YES
HYPRE_DIR = where_ever_linear_solvers_is/hypre

• Make GLVIS, which needs serial mfem. Set these variables in the glvis makefile

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

https://computation-rnd.llnl.gov/linear_solvers/software.php
https://computation-rnd.llnl.gov/linear_solvers/software.php
https://computation-rnd.llnl.gov/linear_solvers/software.php
https://code.google.com/p/mfem/
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
https://computation-rnd.llnl.gov/linear_solvers/software.php
https://code.google.com/p/mfem/
https://code.google.com/p/glvis/

6 Coding Style 19

MFEM_DIR = mfem_location
MFEM_LIB = -L$(MFEM_DIR) -lmfem

• Go back to the mfem directory and type
make clean
make parallel

• Go to braid/examples and set these Makefile variables,
METIS_DIR = ../../metis-5.1.0/lib
MFEM_DIR = ../../mfem
MFEM_FLAGS = -I$(MFEM_DIR)
MFEM_LIB = -L$(MFEM_DIR) -lmfem -L$(METIS_DIR) -lmetis

then type
make drive-04

• To run drive-04 and glvis, open two windows. In one, start a glvis session
./glvis

Then, in the other window, run drive-04
mpirun -np ... drive-04 [args]

Glvis will listen on a port to which drive-04 will dump visualization information.

6 Coding Style

Code should follow the ellemtel style. See braid/misc/sample_c_code.c, and for emacs and vim style files, see
braid/misc/sample.vimrc, and braid/misc/sample.emacs.

7 Using Doxygen

To build the documentation, doxygen must be version 1.8 or greater. XBraid documentation uses a markdown syntax
both in source file comments and in ∗.md files.

To make the documentation,

$ make user_manual
$ acroread user_manual.pdf

or to make a more extensive reference manual for developers,

$ make developer_manual
$ acroread developer_manual.pdf

Developers can run doxygen from a precompiled binary, which may or may not work for your machine,

/usr/casc/hypre/braid/share/doxygen/bin/doxygen

or build doxygen from

/usr/casc/hypre/braid/share/doxygen.tgz

• Compiling doxygen requires a number of dependencies like Bison, GraphViz and Flex. Configure will tell you
what you’re missing

• Unpack doxygen.tgz, then from the doxygen directory
./configure --prefix some_dir_in_your_path
make
make install

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

http://www.stack.nl/~dimitri/doxygen/manual/markdown.html

20 CONTENTS

Documentation Strategy

• The doxygen comments are to be placed in the header files.

• A sample function declaration using the documenation approach using markdown (including typesetting equa-
tions) is in braid.h for the function braid_Init()

• A sample structure documentation is in _braid.h for _braid_Core_struct

• Descriptors for files can also be added, as at the top of braid.h

• The Doxygen manual is at http://www.stack.nl/∼dimitri/doxygen/manual/index.html

XBraid Doxygen details

The user and developer manuals are ultimately produced by Latex. The formatting of the manuals is configured accord-
ing to the following.

• docs/local_doxygen.sty

– Latex style file used

• docs/user_manual_header.tex

– User manual title page and header info

• docs/developer_manual_header.tex

– Developer manual title page and header info

• ∗.md

– Any file ending in .md is extra documentation in markdown format, like Introduction.md or the various
Readme.md files in each directory. This material can be read in plain-text or when it’s compiled by Doxygen
and Latex.

• docs/user_manual.conf

– Doxygen configure file for the user manual

– The FILE_NAMES tag is a filter to only include the user interface routines in braid.h

– The INPUT tag orders the processing of the files and hence the section ordering

• docs/reference_manual.conf

– Same as user_manual.conf, but the FILE_NAMES tag does not exclude any file from processing.

• docs/img

– Contains the images

• To regenerate generic doxygen latex files, type
$ doxygen -w latex header.tex footer.tex doxygen.sty doxy.conf

If this is done, then the .conf file must be changed to use the new header file and to copy the local_doxygen.sty
file to the latex directory.

8 Regression Testing

Overview

• There are three levels in the testing framework. At each level, the fine-grain output from a testscript.sh is
dumped into a directory testscript.dir, with the standard out and error stored in testscript.out and
testscript.err. The test testscript.sh passes if testscript.err is empty (nothing is written to
standard error).

• Basic instructions: run a test with a command like

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

http://www.stack.nl/~dimitri/doxygen/manual/index.html

8 Regression Testing 21

$./test.sh diffusion2D.sh

Then, see if diffusion2D.err is of size 0. If it is not, look at it’s contents to see which test failed.

• To add a new regression test, create a new lowest level script like diffusion2D.sh and then call it from a
machine script at level 2.

• Regression tests should be run before pushing code. It is recommended to run the basic (lowest level) tests like
diffusion2d.sh or machine test like machine-tux.sh

Lowest Level Test Scripts

As an example, here we look at one of the lowest level tests, the diffusion2d test.

Files used:

• test.sh

• diffusion2D.sh

• diffusion2D.saved

Output:

• diffusion2D.dir

• diffusion2D.err

• diffusion2D.out

At this level, we execute

$./test.sh diffusion2D.sh

or just

$./diffusion2D.sh

The script diffusion2D.sh must create diffusion2D.dir and place all fine-grain test output in this direc-
tory. test.sh captures the standard out and error in diffusion2D.out and diffusion2D.err. The test
diffusion2D.sh passes if diffusion2D.err is empty (nothing is written to standard error).

The strategy for low level scripts like diffusion2D.sh is to run a sequence of test drivers such as

$ mpirun -np 1 ../examples/drive-02 -pgrid 1 1 1 -nt 256
$ mpirun -np 4 ../examples/drive-02 -pgrid 1 1 4 -nt 256

The output from the first mpirun test must then be written to files named

diffusion2D.dir/unfiltered.std.out.0
diffusion2D.dir/std.out.0
diffusion2D.dir/std.err.0

and the second mpirun test similarly writes the files

diffusion2D.dir/unfiltered.std.out.1
diffusion2D.dir/std.out.1
diffusion2D.dir/std.err.1

Subsequent tests are written to higher numbered files. The unfiltered.std.out.num file contains all of the
standard out for the test, while std.out.num contains filtered output (usually from a grep command) and could

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

22 CONTENTS

contain the output lines such as iteration numbers and number of levels. The file std.err.num contains the standard
error output.

To see if a test ran correctly, std.out.num is compared to saved output in diffusion2D.saved. The file
diffusion2D.saved contains the concatenated output from all the tests that diffusion2D.sh will run. For
the above example, this file could look like

Begin Test 1
number of levels = 6
iterations = 16
Begin Test 2
number of levels = 4
iterations = 8

This saved output is split into an individual file for each test (using # Begin Test as a delimiter) and these new files
are placed in diffusion2D.dir. So, after running these two regression tests, diffusion2D.dir will contain

diffusion2D.saved.0
diffusion2D.saved.1
unfiltered.std.out.0
std.out.0
std.err.0
unfiltered.std.out.1
std.out.1
std.err.1

An individual test has passed if std.err.num is empty. The file std.err.num contains a diff between
diffusion2D.save.num and std.out.num (the diff ignores whitespace and the delimiter # Begin Test).

Last in the directy where you ran ./test.sh diffusion2d.sh, the files

diffusion2D.err
diffusion2D.out

will be created. If all the tests passed then diffusion2D.err will be empty. Otherwise, it will contain the filenames
of the std.err.num files that are non-empty, representing failed tests.

Level 2 Scripts

As an example, here we look at one of the Level 2 tests, the machine-tux test that Jacob runs.

Files used:

• machine-tux.sh

Output:

• machine-tux.dir

• machine-tux.err (only generated if autotest.sh is used to run machine-tux.sh)

• machine-tux.out (only generated if autotest.sh is used to run machine-tux.sh)

At this level, we execute

./machine-tux.sh

The autotest framework (autotest.sh) calls machine scripts in this way. Each machine script should be
short and call lower-level scripts like diffusion2D.sh. The output from lower-level scripts must be moved to
machine-tux.dir like this:

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

8 Regression Testing 23

$./test.sh diffusion2D.sh
$ mv -f diffusion2D.dir machine-tux.dir
$ mv -f diffusion2D.out machine-tux.dir
$ mv -f diffusion2D.err machine-tux.dir

All error files from diffusion2D.sh will be placed in machine-tux.dir, so if machine-tux.dir has all
zero ∗.err files, then the machine-tux test has passed.

To begin testing on a new machine, like vulcan, add a new machine script similar to machine-tux.sh and change
autotest.sh to recognize and run the new machine test. To then use autotest.sh with the machine script,
you’ll have to set up a passwordless connection from the new machine to

/usr/casc/hypre/braid/testing

Level 3 Script

Here we look at the highest level, where autotest.sh runs all of the level 2 machine tests and emails out the results.

Files used:

• autotest.sh

Output:

• test/autotest_finished

• /usr/casc/hypre/braid/testing/AUTOTEST-20∗∗.∗∗.∗∗-Day
• Email to recipients listed in autotest.sh

At the highest level sits autotest.sh and is called automatically as a cronjob. If you just want to check to see if
you’ve broken anything with a commit, just use lower level scripts.

There are four steps to running autotest.

• Step 1
$./autotesh.sh -init

will do a pull from master for the current working repository and recompile Braid. The autotest output files
(autotest.err and autotest.out) and the output directory (autotest_finished) are initialized.

• Step 2
$./autotest.sh -tux343

will run the autotests on tux343. This command will look for a machine-tux.sh, and execute it, moving the
resulting

machine-tux.dir
machine-tux.err
machine-tux.out

into test/autotest_finished.

• Step 3
$./autotest.sh -remote-copy

will copy /test/autotest_finished/∗ to a time-stamped directory such as
/usr/casc/hypre/braid/testing/AUTOTEST-2013.11.18-Mon
Alternatively,

$./autotesh.sh -remote-copy tux343

will ssh through tux343 to copy to /usr/casc. Multiple machines may independently be running regression
tests and then copy to AUTOTEST-2013.11.18-Mon.

• Step 4
$./autotest.sh -summary-email

will email everyone listed in the $email_list (an autotest.sh variable)

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

24 CONTENTS

Cronfile

To add entries to your crontab, First, put your new cronjob lines into cronfile. Then see what you already have in
your crontab file with

$ crontab -l

Next, append to cronfile whatever you already have

$ crontab -l >> cronfile

Finally, tell crontab to use your cronfile

$ crontab cronfile

Then make sure it took affect with

$ crontab -l

Crontab entry format uses ’∗’ to mean "every" and ’∗/m’ to mean "every m-th". The first five entries on each line
correspond respectively to:

• minute (0-56)

• hour (0-23)

• day of month (1-31)

• month (1-12)

• day of week (0-6)(0=Sunday)

Jacob’s crontab (on tux343):

00 01 * * * source /etc/profile; source $HOME/.bashrc; cd $HOME/joint_repos/braid/test; ./autotest.sh -init
10 01 * * * source /etc/profile; source $HOME/.bashrc; cd $HOME/joint_repos/braid/test; ./autotest.sh -tux343
40 01 * * * source /etc/profile; source $HOME/.bashrc; cd $HOME/joint_repos/braid/test; ./autotest.sh -remote-copy
50 01 * * * source /etc/profile; source $HOME/.bashrc; cd $HOME/joint_repos/braid/test; ./autotest.sh -summary-email
00 02 * * * source /etc/profile; source $HOME/.bashrc; cd $HOME/joint_repos/braid/test; ./autotest.sh -create-tarball

9 Module Index

9.1 Modules

Here is a list of all modules:

User-written routines 25

User interface routines 29

General Interface routines 30

XBraid status routines 38

XBraid test routines 46

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

10 Data Structure Index 25

10 Data Structure Index

10.1 Data Structures

Here are the data structures with brief descriptions:

_braid_AccessStatus 51

_braid_AccuracyHandle 51

_braid_CoarsenRefStatus 52

_braid_CommHandle 53

_braid_Core 54

_braid_Grid 58

_braid_PhiStatus 61

11 File Index

11.1 File List

Here is a list of all files with brief descriptions:

_braid.h
Define headers for developer routines 61

braid.h
Define headers for user interface routines 66

braid_defs.h
Definitions of types, error flags, etc.. 68

braid_status.h
Define headers for XBraid status structures, status get/set routines and status create/destroy rou-
tines 69

braid_test.h
Define headers for XBraid test routines 70

util.h
Define headers for utility routines 70

12 Module Documentation

12.1 User-written routines

Typedefs

• typedef struct _braid_App_struct ∗ braid_App

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

26 CONTENTS

• typedef struct
_braid_Vector_struct ∗ braid_Vector

• typedef braid_Int(∗ braid_PtFcnPhi)(braid_App app, braid_Vector u, braid_PhiStatus status)

• typedef braid_Int(∗ braid_PtFcnInit)(braid_App app, braid_Real t, braid_Vector ∗u_ptr)

• typedef braid_Int(∗ braid_PtFcnClone)(braid_App app, braid_Vector u, braid_Vector ∗v_ptr)

• typedef braid_Int(∗ braid_PtFcnFree)(braid_App app, braid_Vector u)

• typedef braid_Int(∗ braid_PtFcnSum)(braid_App app, braid_Real alpha, braid_Vector x, braid_Real beta, braid-
_Vector y)

• typedef braid_Int(∗ braid_PtFcnSpatialNorm)(braid_App app, braid_Vector u, braid_Real ∗norm_ptr)

• typedef braid_Int(∗ braid_PtFcnAccess)(braid_App app, braid_Vector u, braid_AccessStatus status)

• typedef braid_Int(∗ braid_PtFcnBufSize)(braid_App app, braid_Int ∗size_ptr)

• typedef braid_Int(∗ braid_PtFcnBufPack)(braid_App app, braid_Vector u, void ∗buffer, braid_Int ∗size_ptr)

• typedef braid_Int(∗ braid_PtFcnBufUnpack)(braid_App app, void ∗buffer, braid_Vector ∗u_ptr)

• typedef braid_Int(∗ braid_PtFcnCoarsen)(braid_App app, braid_Vector fu, braid_Vector ∗cu_ptr, braid_Coarsen-
RefStatus status)

• typedef braid_Int(∗ braid_PtFcnRefine)(braid_App app, braid_Vector cu, braid_Vector ∗fu_ptr, braid_Coarsen-
RefStatus status)

12.1.1 Detailed Description

These are all user-written data structures and routines. There are two data structures (braid_App and braid_Vector) for
the user to define. And, there are a variety of function interfaces (defined through function pointer declarations) that the
user must implement.

12.1.2 Typedef Documentation

12.1.2.1 typedef struct _braid_App_struct∗ braid_App

This holds a wide variety of information and is global in that it is passed to every function. This structure holds
everything that the user will need to carry out a simulation. For a simple example, this could just hold the global MPI
communicator and a few values describing the temporal domain.

12.1.2.2 typedef braid_Int(∗ braid_PtFcnAccess)(braid_App app,braid_Vector u,braid_AccessStatus status)

Gives user access to XBraid and to the current vector u at time t. Most commonly, this lets the user write the vector
to screen, file, etc... The user decides what is appropriate. Note how you are told the time value t of the vector u and
other information in status. This lets you tailor the output, e.g., for only certain time values at certain XBraid iterations.
Querrying status for such information is done through braid_AccessStatusGet∗∗(..) routines.

The frequency of XBraid’s calls to access is controlled through braid_SetAccessLevel. For instance, if access_level
is set to 2, then access is called every XBraid iteration and on every XBraid level. In this case, querrying status to
determine the current XBraid level and iteration will be useful. This scenario allows for even more detailed tracking of
the simulation.

Eventually, access will be broadened to allow the user to steer XBraid.

12.1.2.3 typedef braid_Int(∗ braid_PtFcnBufPack)(braid_App app,braid_Vector u,void ∗buffer,braid_Int ∗size_ptr)

This allows XBraid to send messages containing braid_Vectors. This routine packs a vector u into a void ∗ buffer for
MPI.

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

12.1 User-written routines 27

12.1.2.4 typedef braid_Int(∗ braid_PtFcnBufSize)(braid_App app,braid_Int ∗size_ptr)

This routine tells XBraid message sizes by computing an upper bound in bytes for an arbitrary braid_Vector. This size
must be an upper bound for what BufPack and BufUnPack will assume.

12.1.2.5 typedef braid_Int(∗ braid_PtFcnBufUnpack)(braid_App app,void ∗buffer,braid_Vector ∗u_ptr)

This allows XBraid to receive messages containing braid_Vectors. This routine unpacks a void ∗ buffer from MPI into a
braid_Vector.

12.1.2.6 typedef braid_Int(∗ braid_PtFcnClone)(braid_App app,braid_Vector u,braid_Vector ∗v_ptr)

Clone u into v_ptr

12.1.2.7 typedef braid_Int(∗ braid_PtFcnCoarsen)(braid_App app,braid_Vector fu,braid_Vector
∗cu_ptr,braid_CoarsenRefStatus status)

Spatial coarsening (optional). Allows the user to coarsen when going from a fine time grid to a coarse time grid. This
function is called on every vector at each level, thus you can coarsem the entire space time domain. The action of this
function should match the braid_PtFcnRefine function.

The user should query the status structure at run time with braid_CoarsenRefGet∗∗() calls in order to determine how
to coarsen. For instance, status tells you what the current time value is, and what the time step sizes on the fine and
coarse levels are.

12.1.2.8 typedef braid_Int(∗ braid_PtFcnFree)(braid_App app,braid_Vector u)

Free and deallocate u

12.1.2.9 typedef braid_Int(∗ braid_PtFcnInit)(braid_App app,braid_Real t,braid_Vector ∗u_ptr)

Initializes a vector u_ptr at time t

12.1.2.10 typedef braid_Int(∗ braid_PtFcnPhi)(braid_App app,braid_Vector u,braid_PhiStatus status)

Defines the central time stepping function that the user must write. The user must advance the vector u from time tstart
to time tstop.

Query the status structure with braid_PhiStatusGetTstart(status, &tstart) and braid_PhiStatusGetTstop(status, &tstop)
to get tstart and tstop. The status structure also allows for steering. For example, braid_PhiStatusSetRFactor(...) allows
for setting rfactor, which tells XBraid to refine this time interval.

12.1.2.11 typedef braid_Int(∗ braid_PtFcnRefine)(braid_App app,braid_Vector cu,braid_Vector
∗fu_ptr,braid_CoarsenRefStatus status)

Spatial refinement (optional). Allows the user to refine when going from a coarse time grid to a fine time grid. This
function is called on every vector at each level, thus you can refine the entire space time domain. The action of this
function should match the braid_PtFcnCoarsen function.

The user should query the status structure at run time with braid_CoarsenRefGet∗∗() calls in order to determine how
to coarsen. For instance, status tells you what the current time value is, and what the time step sizes on the fine and
coarse levels are.

12.1.2.12 typedef braid_Int(∗ braid_PtFcnSpatialNorm)(braid_App app,braid_Vector u,braid_Real ∗norm_ptr)

Carry out a spatial norm by taking the norm of a braid_Vector norm_ptr = || u || A common choice is the standard
Eucliden norm, but many other choices are possible, such as an L2-norm based on a finite element space. See braid_-
SetTemporalNorm for information on how the spatial norm is combined over time for a global space-time residual norm.

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

28 CONTENTS

This global norm then controls halting.

12.1.2.13 typedef braid_Int(∗ braid_PtFcnSum)(braid_App app,braid_Real alpha,braid_Vector x,braid_Real
beta,braid_Vector y)

AXPY, alpha x + beta y –> y

12.1.2.14 typedef struct _braid_Vector_struct∗ braid_Vector

This defines (roughly) a state vector at a certain time value. It could also contain any other information related to this
vector which is needed to evolve the vector to the next time value, like mesh information.

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

12.2 User interface routines 29

12.2 User interface routines

Modules

• General Interface routines
• XBraid status routines

12.2.1 Detailed Description

These are all the user interface routines.

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

30 CONTENTS

12.3 General Interface routines

Typedefs

• typedef struct _braid_Core_struct ∗ braid_Core

Functions

• braid_Int braid_Init (MPI_Comm comm_world, MPI_Comm comm, braid_Real tstart, braid_Real tstop, braid_Int
ntime, braid_App app, braid_PtFcnPhi phi, braid_PtFcnInit init, braid_PtFcnClone clone, braid_PtFcnFree free,
braid_PtFcnSum sum, braid_PtFcnSpatialNorm spatialnorm, braid_PtFcnAccess access, braid_PtFcnBufSize
bufsize, braid_PtFcnBufPack bufpack, braid_PtFcnBufUnpack bufunpack, braid_Core ∗core_ptr)

• braid_Int braid_Drive (braid_Core core)

• braid_Int braid_Destroy (braid_Core core)

• braid_Int braid_PrintStats (braid_Core core)

• braid_Int braid_SetLoosexTol (braid_Core core, braid_Int level, braid_Real loose_tol)

• braid_Int braid_SetTightxTol (braid_Core core, braid_Int level, braid_Real tight_tol)

• braid_Int braid_SetMaxLevels (braid_Core core, braid_Int max_levels)

• braid_Int braid_SetMinCoarse (braid_Core core, braid_Int min_coarse)

• braid_Int braid_SetAbsTol (braid_Core core, braid_Real atol)

• braid_Int braid_SetRelTol (braid_Core core, braid_Real rtol)

• braid_Int braid_SetNRelax (braid_Core core, braid_Int level, braid_Int nrelax)

• braid_Int braid_SetCFactor (braid_Core core, braid_Int level, braid_Int cfactor)

• braid_Int braid_SetMaxIter (braid_Core core, braid_Int max_iter)

• braid_Int braid_SetFMG (braid_Core core)

• braid_Int braid_SetTemporalNorm (braid_Core core, braid_Int tnorm)

• braid_Int braid_SetNFMGVcyc (braid_Core core, braid_Int nfmg_Vcyc)

• braid_Int braid_SetSpatialCoarsen (braid_Core core, braid_PtFcnCoarsen coarsen)

• braid_Int braid_SetSpatialRefine (braid_Core core, braid_PtFcnRefine refine)

• braid_Int braid_SetPrintLevel (braid_Core core, braid_Int print_level)

• braid_Int braid_SetPrintFile (braid_Core core, const char ∗printfile_name)

• braid_Int braid_SetAccessLevel (braid_Core core, braid_Int access_level)

• braid_Int braid_SplitCommworld (const MPI_Comm ∗comm_world, braid_Int px, MPI_Comm ∗comm_x, MPI_-
Comm ∗comm_t)

• braid_Int braid_GetNumIter (braid_Core core, braid_Int ∗niter_ptr)

• braid_Int braid_GetRNorm (braid_Core core, braid_Real ∗rnorm_ptr)

12.3.1 Detailed Description

These are general interface routines, e.g., routines to initialize and run a XBraid solver, or to split a communicator into
spatial and temporal components.

12.3.2 Typedef Documentation

12.3.2.1 typedef struct _braid_Core_struct∗ braid_Core

points to the core structure defined in _braid.h

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

12.3 General Interface routines 31

12.3.3 Function Documentation

12.3.3.1 braid_Int braid_Destroy (braid_Core core)

Clean up and destroy core.

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

32 CONTENTS

Parameters

core braid_Core (_braid_Core) struct

12.3.3.2 braid_Int braid_Drive (braid_Core core)

Carry out a simulation with XBraid. Integrate in time.

Parameters

core braid_Core (_braid_Core) struct

12.3.3.3 braid_Int braid_GetNumIter (braid_Core core, braid_Int ∗ niter_ptr)

After Drive() finishes, this returns the number of iterations taken.

Parameters

core braid_Core (_braid_Core) struct
niter_ptr output, holds number of iterations taken

12.3.3.4 braid_Int braid_GetRNorm (braid_Core core, braid_Real ∗ rnorm_ptr)

After Drive() finishes, this returns the last measured residual norm.

Parameters

core braid_Core (_braid_Core) struct
rnorm_ptr output, holds final residual norm

12.3.3.5 braid_Int braid_Init (MPI_Comm comm_world, MPI_Comm comm, braid_Real tstart, braid_Real tstop,
braid_Int ntime, braid_App app, braid_PtFcnPhi phi, braid_PtFcnInit init, braid_PtFcnClone clone,
braid_PtFcnFree free, braid_PtFcnSum sum, braid_PtFcnSpatialNorm spatialnorm, braid_PtFcnAccess
access, braid_PtFcnBufSize bufsize, braid_PtFcnBufPack bufpack, braid_PtFcnBufUnpack bufunpack,
braid_Core ∗ core_ptr)

Create a core object with the required initial data.

This core is used by XBraid for internal data structures. The output is core_ptr which points to the newly created
braid_Core structure.

Parameters

comm_world Global communicator for space and time
comm Communicator for temporal dimension
tstart start time
tstop End time
ntime Initial number of temporal grid values

app User-defined _braid_App structure
phi User time stepping routine to advance a braid_Vector forward one step
init Initialize a braid_Vector on the finest temporal grid

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

12.3 General Interface routines 33

clone Clone a braid_Vector
free Free a braid_Vector
sum Compute vector sum of two braid_Vectors

spatialnorm Compute norm of a braid_Vector, this is a norm only over space
access Allows access to XBraid and current braid_Vector
bufsize Computes size for MPI buffer for one braid_Vector

bufpack Packs MPI buffer to contain one braid_Vector
bufunpack Unpacks MPI buffer into a braid_Vector

core_ptr Pointer to braid_Core (_braid_Core) struct

12.3.3.6 braid_Int braid_PrintStats (braid_Core core)

Print statistics after a XBraid run.

Parameters

core braid_Core (_braid_Core) struct

12.3.3.7 braid_Int braid_SetAbsTol (braid_Core core, braid_Real atol)

Set absolute stopping tolerance.

Recommended option over relative tolerance

Parameters

core braid_Core (_braid_Core) struct
atol absolute stopping tolerance

12.3.3.8 braid_Int braid_SetAccessLevel (braid_Core core, braid_Int access_level)

Set access level for XBraid. This controls how often the user’s access routine is called.

• Level 0: Never call the user’s access routine

• Level 1: Only call the user’s access routine after XBraid is finished

• Level 2: Call the user’s access routine every iteration and on every level. This is during _braid_FRestrict, during
the down-cycle part of a XBraid iteration.

Default is level 1.

Parameters

core braid_Core (_braid_Core) struct
access_level desired access_level

12.3.3.9 braid_Int braid_SetCFactor (braid_Core core, braid_Int level, braid_Int cfactor)

Set the coarsening factor cfactor on grid level (level 0 is the finest grid). The default factor is 2 on all levels. To change
the default factor, use level = -1.

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

34 CONTENTS

Parameters

core braid_Core (_braid_Core) struct
level level to set coarsening factor on

cfactor desired coarsening factor

12.3.3.10 braid_Int braid_SetFMG (braid_Core core)

Once called, XBraid will use FMG (i.e., F-cycles.

Parameters

core braid_Core (_braid_Core) struct

12.3.3.11 braid_Int braid_SetLoosexTol (braid_Core core, braid_Int level, braid_Real loose_tol)

Set loose stopping tolerance loose_tol for spatial solves on grid level (level 0 is the finest grid).

Parameters

core braid_Core (_braid_Core) struct
level level to set loose_tol

loose_tol tolerance to set

12.3.3.12 braid_Int braid_SetMaxIter (braid_Core core, braid_Int max_iter)

Set max number of multigrid iterations.

Parameters

core braid_Core (_braid_Core) struct
max_iter maximum iterations to allow

12.3.3.13 braid_Int braid_SetMaxLevels (braid_Core core, braid_Int max_levels)

Set max number of multigrid levels.

Parameters

core braid_Core (_braid_Core) struct
max_levels maximum levels to allow

12.3.3.14 braid_Int braid_SetMinCoarse (braid_Core core, braid_Int min_coarse)

Set minimum allowed coarse grid size. XBraid stops coarsening whenever creating the next coarser grid will result in a
grid smaller than min_coarse. The maximum possible coarse grid size will be min_coarse∗coarsening_factor.

Parameters

core braid_Core (_braid_Core) struct
min_coarse minimum coarse grid size

12.3.3.15 braid_Int braid_SetNFMGVcyc (braid_Core core, braid_Int nfmg_Vcyc)

Set number of V-cycles to use at each FMG level (standard is 1)

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

12.3 General Interface routines 35

Parameters

core braid_Core (_braid_Core) struct
nfmg_Vcyc number of V-cycles to do each FMG level

12.3.3.16 braid_Int braid_SetNRelax (braid_Core core, braid_Int level, braid_Int nrelax)

Set the number of relaxation sweeps nrelax on grid level (level 0 is the finest grid). The default is 1 on all levels. To
change the default factor, use level = -1. One sweep is a CF relaxation sweep.

Parameters

core braid_Core (_braid_Core) struct
level level to set nrelax on

nrelax number of relaxations to do on level

12.3.3.17 braid_Int braid_SetPrintFile (braid_Core core, const char ∗ printfile_name)

Set output file for runtime print messages. Level of printing is controlled by braid_SetPrintLevel. Default is stdout.

Parameters

core braid_Core (_braid_Core) struct
printfile_name output file for XBraid runtime output

12.3.3.18 braid_Int braid_SetPrintLevel (braid_Core core, braid_Int print_level)

Set print level for XBraid. This controls how much information is printed to the XBraid print file (braid_SetPrintFile).

• Level 0: no output

• Level 1: print typical information like a residual history, number of levels in the XBraid hierarchy, and so on.

• Level 2: level 1 output, plus debug level output.

Default is level 1.

Parameters

core braid_Core (_braid_Core) struct
print_level desired print level

12.3.3.19 braid_Int braid_SetRelTol (braid_Core core, braid_Real rtol)

Set relative stopping tolerance, relative to the initial residual. Be careful. If your initial guess is all zero, then the initial
residual may only be nonzero over one or two time values, and this will skew the relative tolerance. Absolute tolerances
are recommended.

Parameters

core braid_Core (_braid_Core) struct
rtol relative stopping tolerance

12.3.3.20 braid_Int braid_SetSpatialCoarsen (braid_Core core, braid_PtFcnCoarsen coarsen)

Set spatial coarsening routine with user-defined routine. Default is no spatial refinment or coarsening.

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

36 CONTENTS

Parameters

core braid_Core (_braid_Core) struct
coarsen function pointer to spatial coarsening routine

12.3.3.21 braid_Int braid_SetSpatialRefine (braid_Core core, braid_PtFcnRefine refine)

Set spatial refinement routine with user-defined routine. Default is no spatial refinment or coarsening.

Parameters

core braid_Core (_braid_Core) struct
refine function pointer to spatial refinement routine

12.3.3.22 braid_Int braid_SetTemporalNorm (braid_Core core, braid_Int tnorm)

Sets XBraid temporal norm.

This option determines how to obtain a global space-time residual norm. That is, this decides how to combine the
spatial norms returned by braid_PtFcnSpatialNorm at each time step to obtain a global norm over space and time. It is
this global norm that then controls halting.

There are three options for setting tnorm. See section Halting tolerance for a more detailed discussion (in Introduction.-
md).

• tnorm=1: One-norm summation of spatial norms

• tnorm=2: Two-norm summation of spatial norms

• tnorm=3: Infinity-norm combination of spatial norms

The default choice is tnorm=2

Parameters

core braid_Core (_braid_Core) struct
tnorm choice of temporal norm

12.3.3.23 braid_Int braid_SetTightxTol (braid_Core core, braid_Int level, braid_Real tight_tol)

Set tight stopping tolerance tight_tol for spatial solves on grid level (level 0 is the finest grid).

Parameters

core braid_Core (_braid_Core) struct
level level to set tight_tol

tight_tol tolerance to set

12.3.3.24 braid_Int braid_SplitCommworld (const MPI_Comm ∗ comm_world, braid_Int px, MPI_Comm ∗ comm_x,
MPI_Comm ∗ comm_t)

Split MPI commworld into comm_x and comm_t, the spatial and temporal communicators. The total number of proces-
sors will equal Px∗Pt, there Px is the number of procs in space, and Pt is the number of procs in time.

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

12.3 General Interface routines 37

Parameters

comm_world Global communicator to split
px Number of processors parallelizing space for a single time step

comm_x Spatial communicator (written as output)
comm_t Temporal communicator (written as output)

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

38 CONTENTS

12.4 XBraid status routines

Data Structures

• struct _braid_AccessStatus
• struct _braid_CoarsenRefStatus
• struct _braid_PhiStatus

Macros

• #define _braid_StatusElt(status, elt) ((status) -> elt)

Typedefs

• typedef struct
_braid_AccessStatus_struct ∗ braid_AccessStatus

• typedef struct
_braid_CoarsenRefStatus_struct ∗ braid_CoarsenRefStatus

• typedef struct
_braid_PhiStatus_struct ∗ braid_PhiStatus

Functions

• braid_Int _braid_AccessStatusInit (braid_Real t, braid_Real rnorm, braid_Int iter, braid_Int level, braid_Int done,
braid_Int wrapper_test, braid_AccessStatus status)

• braid_Int _braid_AccessStatusDestroy (braid_AccessStatus status)
• braid_Int braid_AccessStatusGetT (braid_AccessStatus status, braid_Real ∗t_ptr)
• braid_Int braid_AccessStatusGetResidual (braid_AccessStatus status, braid_Real ∗rnorm_ptr)
• braid_Int braid_AccessStatusGetIter (braid_AccessStatus status, braid_Int ∗iter_ptr)
• braid_Int braid_AccessStatusGetLevel (braid_AccessStatus status, braid_Int ∗level_ptr)
• braid_Int braid_AccessStatusGetDone (braid_AccessStatus status, braid_Int ∗done_ptr)
• braid_Int braid_AccessStatusGetWrapperTest (braid_AccessStatus status, braid_Int ∗wtest_ptr)
• braid_Int braid_AccessStatusGetTILD (braid_AccessStatus status, braid_Real ∗t_ptr, braid_Int ∗iter_ptr, braid_-

Int ∗level_ptr, braid_Int ∗done_ptr)
• braid_Int _braid_CoarsenRefStatusInit (braid_Real tstart, braid_Real f_tprior, braid_Real f_tstop, braid_Real c_-

tprior, braid_Real c_tstop, braid_CoarsenRefStatus status)
• braid_Int _braid_CoarsenRefStatusDestroy (braid_CoarsenRefStatus status)
• braid_Int braid_CoarsenRefStatusGetTstart (braid_CoarsenRefStatus status, braid_Real ∗tstart_ptr)
• braid_Int braid_CoarsenRefStatusGetFTstop (braid_CoarsenRefStatus status, braid_Real ∗f_tstop_ptr)
• braid_Int braid_CoarsenRefStatusGetFTprior (braid_CoarsenRefStatus status, braid_Real ∗f_tprior_ptr)
• braid_Int braid_CoarsenRefStatusGetCTstop (braid_CoarsenRefStatus status, braid_Real ∗c_tstop_ptr)
• braid_Int braid_CoarsenRefStatusGetCTprior (braid_CoarsenRefStatus status, braid_Real ∗c_tprior_ptr)
• braid_Int braid_CoarsenRefStatusGetTpriorTstop (braid_CoarsenRefStatus status, braid_Real ∗tstart_ptr, braid-

_Real ∗f_tprior_ptr, braid_Real ∗f_tstop_ptr, braid_Real ∗c_tprior_ptr, braid_Real ∗c_tstop_ptr)
• braid_Int _braid_PhiStatusInit (braid_Real tstart, braid_Real tstop, braid_Real accuracy, braid_PhiStatus status)
• braid_Int _braid_PhiStatusDestroy (braid_PhiStatus status)
• braid_Int braid_PhiStatusGetTstart (braid_PhiStatus status, braid_Real ∗tstart_ptr)
• braid_Int braid_PhiStatusGetTstop (braid_PhiStatus status, braid_Real ∗tstop_ptr)
• braid_Int braid_PhiStatusGetAccuracy (braid_PhiStatus status, braid_Real ∗accuracy_ptr)
• braid_Int braid_PhiStatusSetRFactor (braid_PhiStatus status, braid_Real rfactor)
• braid_Int braid_PhiStatusGetTstartTstop (braid_PhiStatus status, braid_Real ∗tstart_ptr, braid_Real ∗tstop_ptr)

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

12.4 XBraid status routines 39

12.4.1 Detailed Description

XBraid status structures are what tell the user the status of the simulation when their routines (phi, coarsen/refine,
access) are called.

12.4.2 Macro Definition Documentation

12.4.2.1 #define _braid_StatusElt(status, elt) ((status) -> elt)

Accessor for all braid∗∗Status attributes

12.4.3 Typedef Documentation

12.4.3.1 typedef struct _braid_AccessStatus_struct∗ braid_AccessStatus

The user access routine will receive braid_AccessStatus, which will be a pointer to the actual _braid_AccessStatus_-
struct

12.4.3.2 typedef struct _braid_CoarsenRefStatus_struct∗ braid_CoarsenRefStatus

The user coarsen and refine routines will receive braid_CoarsenRefStatus, which will be a pointer to the actual _braid-
_CoarsenRefStatus_struct

12.4.3.3 typedef struct _braid_PhiStatus_struct∗ braid_PhiStatus

The user’s phi routine will receive braid_PhiStatus, which will be a pointer to the actual _braid_PhiStatus_struct

12.4.4 Function Documentation

12.4.4.1 braid_Int _braid_AccessStatusDestroy (braid_AccessStatus status)

Destroy a braid_AccessStatus structurestructure to be destroyed

12.4.4.2 braid_Int _braid_AccessStatusInit (braid_Real t, braid_Real rnorm, braid_Int iter, braid_Int level, braid_Int
done, braid_Int wrapper_test, braid_AccessStatus status)

Initialize a braid_AccessStatus structure

Parameters

t current time
rnorm current residual norm in XBraid

iter current iteration in XBraid
level current level in XBraid
done boolean describing whether XBraid has finished

wrapper_test boolean describing whether this call is only a wrapper test
status structure to initialize

12.4.4.3 braid_Int _braid_CoarsenRefStatusDestroy (braid_CoarsenRefStatus status)

Destroy a braid_CoarsenRefStatus structurestructure to be destroyed

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

40 CONTENTS

12.4.4.4 braid_Int _braid_CoarsenRefStatusInit (braid_Real tstart, braid_Real f_tprior, braid_Real f_tstop, braid_Real
c_tprior, braid_Real c_tstop, braid_CoarsenRefStatus status)

Initialize a braid_CoarsenRefStatus structure

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

12.4 XBraid status routines 41

Parameters

tstart time value for current vector
f_tprior time value to the left of tstart on fine grid
f_tstop time value to the right of tstart on fine grid

c_tprior time value to the left of tstart on coarse grid
c_tstop time value to the right of tstart on coarse grid

status structure to initialize

12.4.4.5 braid_Int _braid_PhiStatusDestroy (braid_PhiStatus status)

Destroy a braid_PhiStatus structurestructure to be destroyed

12.4.4.6 braid_Int _braid_PhiStatusInit (braid_Real tstart, braid_Real tstop, braid_Real accuracy, braid_PhiStatus
status)

Initialize a braid_PhiStatus structure

Parameters

tstart current time value
tstop time value to evolve towards, time value to the right of tstart

accuracy advanced option allowing variable accuracy for implicit phi
status structure to initialize

12.4.4.7 braid_Int braid_AccessStatusGetDone (braid_AccessStatus status, braid_Int ∗ done_ptr)

Return whether XBraid is done for the current simulation.

done_ptr = 1 indicates that XBraid has finished iterating, (either maxiter has been reached, or the tolerance has been
met).

Parameters

status structure containing current simulation info
done_ptr output, =1 if XBraid has finished, else =0

12.4.4.8 braid_Int braid_AccessStatusGetIter (braid_AccessStatus status, braid_Int ∗ iter_ptr)

Return the current iteration from the AccessStatus structure.

Parameters

status structure containing current simulation info
iter_ptr output, current XBraid iteration number

12.4.4.9 braid_Int braid_AccessStatusGetLevel (braid_AccessStatus status, braid_Int ∗ level_ptr)

Return the current XBraid level from the AccessStatus structure.

Parameters

status structure containing current simulation info

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

42 CONTENTS

level_ptr output, current level in XBraid

12.4.4.10 braid_Int braid_AccessStatusGetResidual (braid_AccessStatus status, braid_Real ∗ rnorm_ptr)

Return the current residual norm from the AccessStatus structure.

Parameters

status structure containing current simulation info
rnorm_ptr output, current residual norm

12.4.4.11 braid_Int braid_AccessStatusGetT (braid_AccessStatus status, braid_Real ∗ t_ptr)

Return the current time from the AccessStatus structure.

Parameters

status structure containing current simulation info
t_ptr output, current time

12.4.4.12 braid_Int braid_AccessStatusGetTILD (braid_AccessStatus status, braid_Real ∗ t_ptr, braid_Int ∗ iter_ptr,
braid_Int ∗ level_ptr, braid_Int ∗ done_ptr)

Return XBraid status for the current simulation. Four values are returned.

TILD : time, iteration, level, done

These values are also available through individual Get routines. These individual routines are the location of detailed
documentation on each parameter, e.g., see braid_AccessStatusGetDone for more information on the done value.

Parameters

status structure containing current simulation info
t_ptr output, current time

iter_ptr output, current iteration in XBraid
level_ptr output, current level in XBraid
done_ptr output, boolean describing whether XBraid has finished

12.4.4.13 braid_Int braid_AccessStatusGetWrapperTest (braid_AccessStatus status, braid_Int ∗ wtest_ptr)

Return whether this is a wrapper test or an XBraid run

Parameters

status structure containing current simulation info
wtest_ptr output, =1 if this is a wrapper test, =0 if XBraid run

12.4.4.14 braid_Int braid_CoarsenRefStatusGetCTprior (braid_CoarsenRefStatus status, braid_Real ∗ c_tprior_ptr)

Return the coarse grid time value to the left of the current time value from the CoarsenRefStatus structure.

Parameters

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

12.4 XBraid status routines 43

status structure containing current simulation info
c_tprior_ptr output, time value to the left of current time value on coarse grid

12.4.4.15 braid_Int braid_CoarsenRefStatusGetCTstop (braid_CoarsenRefStatus status, braid_Real ∗ c_tstop_ptr)

Return the coarse grid time value to the right of the current time value from the CoarsenRefStatus structure.

Parameters

status structure containing current simulation info
c_tstop_ptr output, time value to the right of current time value on coarse grid

12.4.4.16 braid_Int braid_CoarsenRefStatusGetFTprior (braid_CoarsenRefStatus status, braid_Real ∗ f_tprior_ptr)

Return the fine grid time value to the left of the current time value from the CoarsenRefStatus structure.

Parameters

status structure containing current simulation info
f_tprior_ptr output, time value to the left of current time value on fine grid

12.4.4.17 braid_Int braid_CoarsenRefStatusGetFTstop (braid_CoarsenRefStatus status, braid_Real ∗ f_tstop_ptr)

Return the fine grid time value to the right of the current time value from the CoarsenRefStatus structure.

Parameters

status structure containing current simulation info
f_tstop_ptr output, time value to the right of current time value on fine grid

12.4.4.18 braid_Int braid_CoarsenRefStatusGetTpriorTstop (braid_CoarsenRefStatus status, braid_Real ∗ tstart_ptr,
braid_Real ∗ f_tprior_ptr, braid_Real ∗ f_tstop_ptr, braid_Real ∗ c_tprior_ptr, braid_Real ∗ c_tstop_ptr)

Return XBraid status for the current simulation. Five values are returned, tstart, f_tprior, f_tstop, c_tprior, c_tstop.

These values are also available through individual Get routines. These individual routines are the location of detailed
documentation on each parameter, e.g., see braid_CoarsenRefStatusGetCTprior for more information on the c_tprior
value.

Parameters

status structure containing current simulation info
tstart_ptr output, time value current vector

f_tprior_ptr output, time value to the left of tstart on fine grid
f_tstop_ptr output, time value to the right of tstart on fine grid

c_tprior_ptr output, time value to the left of tstart on coarse grid
c_tstop_ptr output, time value to the right of tstart on coarse grid

12.4.4.19 braid_Int braid_CoarsenRefStatusGetTstart (braid_CoarsenRefStatus status, braid_Real ∗ tstart_ptr)

Return the current time value from the CoarsenRefStatus structure.

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

44 CONTENTS

Parameters

status structure containing current simulation info
tstart_ptr output, current time

12.4.4.20 braid_Int braid_PhiStatusGetAccuracy (braid_PhiStatus status, braid_Real ∗ accuracy_ptr)

Return the current accuracy value, usually between 0 and 1.0, which can allow for tuning of implicit solve accuracy

Parameters

status structure containing current simulation info
accuracy_ptr output, current accuracy value

12.4.4.21 braid_Int braid_PhiStatusGetTstart (braid_PhiStatus status, braid_Real ∗ tstart_ptr)

Return the current time value from the PhiStatus structure.

Parameters

status structure containing current simulation info
tstart_ptr output, current time

12.4.4.22 braid_Int braid_PhiStatusGetTstartTstop (braid_PhiStatus status, braid_Real ∗ tstart_ptr, braid_Real ∗
tstop_ptr)

Return XBraid status for the current simulation. Two values are returned, tstart and tstop.

These values are also available through individual Get routines. These individual routines are the location of detailed
documentation on each parameter, e.g., see braid_PhiStatusGetTstart for more information on the tstart value.

Parameters

status structure containing current simulation info
tstart_ptr output, current time
tstop_ptr output, next time value to evolve towards

12.4.4.23 braid_Int braid_PhiStatusGetTstop (braid_PhiStatus status, braid_Real ∗ tstop_ptr)

Return the time value to the right of the current time value from the PhiStatus structure.

Parameters

status structure containing current simulation info
tstop_ptr output, next time value to evolve towards

12.4.4.24 braid_Int braid_PhiStatusSetRFactor (braid_PhiStatus status, braid_Real rfactor)

Set the rfactor, a desired refinement factor for this interval. rfactor=1 indicates no refinement, otherwise, this inteval is
subdivided rfactor times.

Parameters

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

12.4 XBraid status routines 45

status structure containing current simulation info
rfactor user-determined desired rfactor

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

46 CONTENTS

12.5 XBraid test routines

Functions

• braid_Int braid_TestInitAccess (braid_App app, MPI_Comm comm_x, FILE ∗fp, braid_Real t, braid_PtFcnInit init,
braid_PtFcnAccess access, braid_PtFcnFree free)

• braid_Int braid_TestClone (braid_App app, MPI_Comm comm_x, FILE ∗fp, braid_Real t, braid_PtFcnInit init,
braid_PtFcnAccess access, braid_PtFcnFree free, braid_PtFcnClone clone)

• braid_Int braid_TestSum (braid_App app, MPI_Comm comm_x, FILE ∗fp, braid_Real t, braid_PtFcnInit init, braid-
_PtFcnAccess access, braid_PtFcnFree free, braid_PtFcnClone clone, braid_PtFcnSum sum)

• braid_Int braid_TestSpatialNorm (braid_App app, MPI_Comm comm_x, FILE ∗fp, braid_Real t, braid_PtFcnInit
init, braid_PtFcnFree free, braid_PtFcnClone clone, braid_PtFcnSum sum, braid_PtFcnSpatialNorm spatialnorm)

• braid_Int braid_TestBuf (braid_App app, MPI_Comm comm_x, FILE ∗fp, braid_Real t, braid_PtFcnInit init, braid_-
PtFcnFree free, braid_PtFcnSum sum, braid_PtFcnSpatialNorm spatialnorm, braid_PtFcnBufSize bufsize, braid-
_PtFcnBufPack bufpack, braid_PtFcnBufUnpack bufunpack)

• braid_Int braid_TestCoarsenRefine (braid_App app, MPI_Comm comm_x, FILE ∗fp, braid_Real t, braid_Real fdt,
braid_Real cdt, braid_PtFcnInit init, braid_PtFcnAccess access, braid_PtFcnFree free, braid_PtFcnClone clone,
braid_PtFcnSum sum, braid_PtFcnSpatialNorm spatialnorm, braid_PtFcnCoarsen coarsen, braid_PtFcnRefine
refine)

• braid_Int braid_TestAll (braid_App app, MPI_Comm comm_x, FILE ∗fp, braid_Real t, braid_Real fdt, braid_-
Real cdt, braid_PtFcnInit init, braid_PtFcnFree free, braid_PtFcnClone clone, braid_PtFcnSum sum, braid_Pt-
FcnSpatialNorm spatialnorm, braid_PtFcnBufSize bufsize, braid_PtFcnBufPack bufpack, braid_PtFcnBufUnpack
bufunpack, braid_PtFcnCoarsen coarsen, braid_PtFcnRefine refine)

12.5.1 Detailed Description

These are sanity check routines to help a user test their XBraid code.

12.5.2 Function Documentation

12.5.2.1 braid_Int braid_TestAll (braid_App app, MPI_Comm comm_x, FILE ∗ fp, braid_Real t, braid_Real fdt,
braid_Real cdt, braid_PtFcnInit init, braid_PtFcnFree free, braid_PtFcnClone clone, braid_PtFcnSum
sum, braid_PtFcnSpatialNorm spatialnorm, braid_PtFcnBufSize bufsize, braid_PtFcnBufPack bufpack,
braid_PtFcnBufUnpack bufunpack, braid_PtFcnCoarsen coarsen, braid_PtFcnRefine refine)

Runs all of the individual braid_Test∗ routines

• Returns 0 if the tests fail

• Returns 1 if the tests pass

• Check the log messages to see details of which tests failed.

Parameters

app User defined App structure
comm_x Spatial communicator

fp File pointer (could be stdout or stderr) for log messages

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

12.5 XBraid test routines 47

t Time value to initialize test vectors with
fdt Fine time step value that you spatially coarsen from
cdt Coarse time step value that you coarsen to
init Initialize a braid_Vector on finest temporal grid

free Free a braid_Vector
clone Clone a braid_Vector
sum Compute vector sum of two braid_Vectors

spatialnorm Compute norm of a braid_Vector, this is a norm only over space
bufsize Computes size in bytes for one braid_Vector MPI buffer

bufpack Packs MPI buffer to contain one braid_Vector
bufunpack Unpacks MPI buffer into a braid_Vector

coarsen Spatially coarsen a vector. If NULL, test is skipped.
refine Spatially refine a vector. If NULL, test is skipped.

12.5.2.2 braid_Int braid_TestBuf (braid_App app, MPI_Comm comm_x, FILE ∗ fp, braid_Real t, braid_PtFcnInit init,
braid_PtFcnFree free, braid_PtFcnSum sum, braid_PtFcnSpatialNorm spatialnorm, braid_PtFcnBufSize
bufsize, braid_PtFcnBufPack bufpack, braid_PtFcnBufUnpack bufunpack)

Test the BufPack, BufUnpack and BufSize functions.

A vector is initialized at time t, packed into a buffer, then unpacked from a buffer. The unpacked result must equal the
original vector.

• Returns 0 if the tests fail

• Returns 1 if the tests pass

• Check the log messages to see details of which tests failed.

Parameters

app User defined App structure
comm_x Spatial communicator

fp File pointer (could be stdout or stderr) for log messages
t Time value to test Buffer routines (used to initialize the vectors)

init Initialize a braid_Vector on finest temporal grid
free Free a braid_Vector
sum Compute vector sum of two braid_Vectors

spatialnorm Compute norm of a braid_Vector, this is a norm only over space
bufsize Computes size in bytes for one braid_Vector MPI buffer

bufpack Packs MPI buffer to contain one braid_Vector
bufunpack Unpacks MPI buffer containing one braid_Vector

12.5.2.3 braid_Int braid_TestClone (braid_App app, MPI_Comm comm_x, FILE ∗ fp, braid_Real t, braid_PtFcnInit init,
braid_PtFcnAccess access, braid_PtFcnFree free, braid_PtFcnClone clone)

Test the clone function.

A vector is initialized at time t, cloned, and both vectors are written. Then both vectors are free-d. The user is to check
(via the access function) to see if it is identical.

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

48 CONTENTS

Parameters

app User defined App structure
comm_x Spatial communicator

fp File pointer (could be stdout or stderr) for log messages
t Time value to test clone with (used to initialize the vectors)

init Initialize a braid_Vector on finest temporal grid
access Allows access to XBraid and current braid_Vector (can be NULL for no writing)

free Free a braid_Vector
clone Clone a braid_Vector

12.5.2.4 braid_Int braid_TestCoarsenRefine (braid_App app, MPI_Comm comm_x, FILE ∗ fp, braid_Real t, braid_Real fdt,
braid_Real cdt, braid_PtFcnInit init, braid_PtFcnAccess access, braid_PtFcnFree free, braid_PtFcnClone
clone, braid_PtFcnSum sum, braid_PtFcnSpatialNorm spatialnorm, braid_PtFcnCoarsen coarsen,
braid_PtFcnRefine refine)

Test the Coarsen and Refine functions.

A vector is initialized at time t, and various sanity checks on the spatial coarsening and refinement routines are run.

• Returns 0 if the tests fail

• Returns 1 if the tests pass

• Check the log messages to see details of which tests failed.

Parameters

app User defined App structure
comm_x Spatial communicator

fp File pointer (could be stdout or stderr) for log messages
t Time value to initialize test vectors

fdt Fine time step value that you spatially coarsen from
cdt Coarse time step value that you coarsen to
init Initialize a braid_Vector on finest temporal grid

access Allows access to XBraid and current braid_Vector (can be NULL for no writing)
free Free a braid_Vector

clone Clone a braid_Vector
sum Compute vector sum of two braid_Vectors

spatialnorm Compute norm of a braid_Vector, this is a norm only over space
coarsen Spatially coarsen a vector

refine Spatially refine a vector

12.5.2.5 braid_Int braid_TestInitAccess (braid_App app, MPI_Comm comm_x, FILE ∗ fp, braid_Real t, braid_PtFcnInit
init, braid_PtFcnAccess access, braid_PtFcnFree free)

Test the init, access and free functions.

A vector is initialized at time t, written, and then free-d

Parameters

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

12.5 XBraid test routines 49

app User defined App structure
comm_x Spatial communicator

fp File pointer (could be stdout or stderr) for log messages
t Time value to test init with (used to initialize the vectors)

init Initialize a braid_Vector on finest temporal grid
access Allows access to XBraid and current braid_Vector (can be NULL for no writing)

free Free a braid_Vector

12.5.2.6 braid_Int braid_TestSpatialNorm (braid_App app, MPI_Comm comm_x, FILE ∗ fp, braid_Real t, braid_PtFcnInit
init, braid_PtFcnFree free, braid_PtFcnClone clone, braid_PtFcnSum sum, braid_PtFcnSpatialNorm
spatialnorm)

Test the spatialnorm function.

A vector is initialized at time t and then cloned. Various norm evaluations like || 3 v || / || v || with known output are then
done.

• Returns 0 if the tests fail

• Returns 1 if the tests pass

• Check the log messages to see details of which tests failed.

Parameters

app User defined App structure
comm_x Spatial communicator

fp File pointer (could be stdout or stderr) for log messages
t Time value to test SpatialNorm with (used to initialize the vectors)

init Initialize a braid_Vector on finest temporal grid
free Free a braid_Vector

clone Clone a braid_Vector
sum Compute vector sum of two braid_Vectors

spatialnorm Compute norm of a braid_Vector, this is a norm only over space

12.5.2.7 braid_Int braid_TestSum (braid_App app, MPI_Comm comm_x, FILE ∗ fp, braid_Real t, braid_PtFcnInit init,
braid_PtFcnAccess access, braid_PtFcnFree free, braid_PtFcnClone clone, braid_PtFcnSum sum)

Test the sum function.

A vector is initialized at time t, cloned, and then these two vectors are summed a few times, with the results written.
The vectors are then free-d. The user is to check (via the access function) that the output matches the sum of the two
original vectors.

Parameters

app User defined App structure
comm_x Spatial communicator

fp File pointer (could be stdout or stderr) for log messages
t Time value to test Sum with (used to initialize the vectors)

init Initialize a braid_Vector on finest temporal grid

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

50 CONTENTS

access Allows access to XBraid and current braid_Vector (can be NULL for no writing)
free Free a braid_Vector

clone Clone a braid_Vector
sum Compute vector sum of two braid_Vectors

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

13 Data Structure Documentation 51

13 Data Structure Documentation

13.1 _braid_AccessStatus Struct Reference

Data Fields

• braid_Real t
• braid_Int iter
• braid_Int level
• braid_Real rnorm
• braid_Int done
• braid_Int wrapper_test

13.1.1 Detailed Description

AccessStatus structure which defines the status of XBraid at a given instant on some level during a run. The user
accesses it through braid_AccessStatusGet∗∗() functions.

13.1.2 Field Documentation

13.1.2.1 braid_Int done

boolean describing whether XBraid has finished

13.1.2.2 braid_Int iter

XBraid iteration number

13.1.2.3 braid_Int level

current level in XBraid

13.1.2.4 braid_Real rnorm

residual norm

13.1.2.5 braid_Real t

current time

13.1.2.6 braid_Int wrapper_test

boolean describing whether this call is only a wrapper test

The documentation for this struct was generated from the following file:

• braid_status.h

13.2 _braid_AccuracyHandle Struct Reference

Data Fields

• braid_Int matchF

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

52 CONTENTS

• braid_Real value

• braid_Real old_value

• braid_Real loose

• braid_Real tight

• braid_Int tight_used

13.2.1 Detailed Description

XBraid Accuracy Handle, used for controlling the accuracy of solves during implicit time stepping. For instance, to do
less accurate solves on coarse time grids

13.2.2 Field Documentation

13.2.2.1 braid_Real loose

loose accuracy for spatial solves

13.2.2.2 braid_Int matchF

13.2.2.3 braid_Real old_value

old accuracy value used in FRestrict

13.2.2.4 braid_Real tight

tight accuracy for spatial solves

13.2.2.5 braid_Int tight_used

tight accuracy used (1) or not (0)

13.2.2.6 braid_Real value

accuracy value

The documentation for this struct was generated from the following file:

• _braid.h

13.3 _braid_CoarsenRefStatus Struct Reference

Data Fields

• braid_Real tstart

• braid_Real f_tprior

• braid_Real f_tstop

• braid_Real c_tprior

• braid_Real c_tstop

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

13.4 _braid_CommHandle Struct Reference 53

13.3.1 Detailed Description

The user coarsen and refine routines will receive a CoarsenRefStatus structure, which defines the status of XBraid at a
given instant of coarsening or refinement on some level during a run. The user accesses it through braid_CoarsenRef-
StatusGet∗∗() functions.

13.3.2 Field Documentation

13.3.2.1 braid_Real c_tprior

time value to the left of tstart on coarse grid

13.3.2.2 braid_Real c_tstop

time value to the right of tstart on coarse grid

13.3.2.3 braid_Real f_tprior

time value to the left of tstart on fine grid

13.3.2.4 braid_Real f_tstop

time value to the right of tstart on fine grid

13.3.2.5 braid_Real tstart

current time value

The documentation for this struct was generated from the following file:

• braid_status.h

13.4 _braid_CommHandle Struct Reference

Data Fields

• braid_Int request_type

• braid_Int num_requests

• MPI_Request ∗ requests

• MPI_Status ∗ status

• void ∗ buffer

• braid_Vector ∗ vector_ptr

13.4.1 Detailed Description

XBraid comm handle structure

Used for initiating and completing nonblocking communication to pass braid_Vectors between processors.

13.4.2 Field Documentation

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

54 CONTENTS

13.4.2.1 void∗ buffer

Buffer for message

13.4.2.2 braid_Int num_requests

number of active requests for this handle, usually 1

13.4.2.3 braid_Int request_type

two values: recv type = 1, and send type = 0

13.4.2.4 MPI_Request∗ requests

MPI request structure

13.4.2.5 MPI_Status∗ status

MPI status

13.4.2.6 braid_Vector∗ vector_ptr

braid_vector being sent/received

The documentation for this struct was generated from the following file:

• _braid.h

13.5 _braid_Core Struct Reference

Data Fields

• MPI_Comm comm_world
• MPI_Comm comm
• braid_Real tstart
• braid_Real tstop
• braid_Int ntime
• braid_App app
• braid_PtFcnPhi phi
• braid_PtFcnInit init
• braid_PtFcnClone clone
• braid_PtFcnFree free
• braid_PtFcnSum sum
• braid_PtFcnSpatialNorm spatialnorm
• braid_PtFcnAccess access
• braid_PtFcnBufSize bufsize
• braid_PtFcnBufPack bufpack
• braid_PtFcnBufUnpack bufunpack
• braid_PtFcnCoarsen coarsen
• braid_PtFcnRefine refine
• braid_Int access_level
• braid_Int print_level
• braid_Int max_levels

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

13.5 _braid_Core Struct Reference 55

• braid_Int min_coarse
• braid_Real tol
• braid_Int rtol
• braid_Int ∗ nrels
• braid_Int nrdefault
• braid_Int ∗ cfactors
• braid_Int cfdefault
• braid_Int max_iter
• braid_Int niter
• braid_Real rnorm
• braid_Int fmg
• braid_Int nfmg_Vcyc
• braid_Int tnorm
• braid_Real ∗ tnorm_a
• _braid_AccuracyHandle ∗ accuracy
• braid_AccessStatus astatus
• braid_CoarsenRefStatus cstatus
• braid_PhiStatus pstatus
• braid_Int gupper
• braid_Int ∗ rfactors
• braid_Int nlevels
• _braid_Grid ∗∗ grids
• braid_Real localtime
• braid_Real globaltime

13.5.1 Detailed Description

The typedef _braid_Core struct is a critical part of XBraid and is passed to each routine in XBraid. It thus allows each
routine access to XBraid attributes.

13.5.2 Field Documentation

13.5.2.1 braid_PtFcnAccess access

user access function to XBraid and current vector

13.5.2.2 braid_Int access_level

determines how often to call the user’s access routine

13.5.2.3 _braid_AccuracyHandle∗ accuracy

accuracy of spatial solves on different levels

13.5.2.4 braid_App app

application data for the user

13.5.2.5 braid_AccessStatus astatus

status structure passed to user-written Access routine

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

56 CONTENTS

13.5.2.6 braid_PtFcnBufPack bufpack

pack a buffer

13.5.2.7 braid_PtFcnBufSize bufsize

return buffer size

13.5.2.8 braid_PtFcnBufUnpack bufunpack

unpack a buffer

13.5.2.9 braid_Int∗ cfactors

coarsening factors

13.5.2.10 braid_Int cfdefault

default coarsening factor

13.5.2.11 braid_PtFcnClone clone

clone a vector

13.5.2.12 braid_PtFcnCoarsen coarsen

(optional) return a coarsened vector

13.5.2.13 MPI_Comm comm

communicator for the time dimension

13.5.2.14 MPI_Comm comm_world

13.5.2.15 braid_CoarsenRefStatus cstatus

status structure passed to user-written coarsen/refine routines

13.5.2.16 braid_Int fmg

use FMG cycle

13.5.2.17 braid_PtFcnFree free

free up a vector

13.5.2.18 braid_Real globaltime

global wall time for braid_Drive()

13.5.2.19 _braid_Grid∗∗ grids

pointer to temporal grid structures for each level

13.5.2.20 braid_Int gupper

global upper index on the fine grid

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

13.5 _braid_Core Struct Reference 57

13.5.2.21 braid_PtFcnInit init

return an initialized braid_Vector

13.5.2.22 braid_Real localtime

local wall time for braid_Drive()

13.5.2.23 braid_Int max_iter

maximum number of multigrid in time iterations

13.5.2.24 braid_Int max_levels

maximum number of temporal grid levels

13.5.2.25 braid_Int min_coarse

minimum possible coarse grid size

13.5.2.26 braid_Int nfmg_Vcyc

number of V-cycle calls at each level in FMG

13.5.2.27 braid_Int niter

number of iterations

13.5.2.28 braid_Int nlevels

number of temporal grid levels

13.5.2.29 braid_Int nrdefault

default number of pre-relaxations

13.5.2.30 braid_Int∗ nrels

number of pre-relaxations on each level

13.5.2.31 braid_Int ntime

initial number of time intervals

13.5.2.32 braid_PtFcnPhi phi

apply phi function

13.5.2.33 braid_Int print_level

determines amount of output printed to screem (0,1,2)

13.5.2.34 braid_PhiStatus pstatus

status structure passed to user-written phi routines

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

58 CONTENTS

13.5.2.35 braid_PtFcnRefine refine

(optional) return a refined vector

13.5.2.36 braid_Int∗ rfactors

refinement factors for finest grid (if any)

13.5.2.37 braid_Real rnorm

residual norm

13.5.2.38 braid_Int rtol

use relative tolerance

13.5.2.39 braid_PtFcnSpatialNorm spatialnorm

Compute norm of a braid_Vector, this is a norm only over space

13.5.2.40 braid_PtFcnSum sum

vector sum

13.5.2.41 braid_Int tnorm

choice of temporal norm

13.5.2.42 braid_Real∗ tnorm_a

local array of residual norms on a proc’s interval, used for inf-norm

13.5.2.43 braid_Real tol

stopping tolerance

13.5.2.44 braid_Real tstart

start time

13.5.2.45 braid_Real tstop

stop time

The documentation for this struct was generated from the following file:

• _braid.h

13.6 _braid_Grid Struct Reference

Data Fields

• braid_Int level
• braid_Int ilower
• braid_Int iupper
• braid_Int clower

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

13.6 _braid_Grid Struct Reference 59

• braid_Int cupper

• braid_Int gupper

• braid_Int cfactor

• braid_Int ncpoints

• braid_Vector ∗ ua

• braid_Real ∗ ta

• braid_Vector ∗ va

• braid_Vector ∗ wa

• braid_Int recv_index

• braid_Int send_index

• _braid_CommHandle ∗ recv_handle

• _braid_CommHandle ∗ send_handle

• braid_Vector ∗ ua_alloc

• braid_Real ∗ ta_alloc

• braid_Vector ∗ va_alloc

• braid_Vector ∗ wa_alloc

13.6.1 Detailed Description

XBraid Grid structure for a certain time level

Holds all the information for a processor related to the temporal grid at this level.

13.6.2 Field Documentation

13.6.2.1 braid_Int cfactor

coarsening factor

13.6.2.2 braid_Int clower

smallest C point index

13.6.2.3 braid_Int cupper

largest C point index

13.6.2.4 braid_Int gupper

global size of the grid

13.6.2.5 braid_Int ilower

smallest time index at this level

13.6.2.6 braid_Int iupper

largest time index at this level

13.6.2.7 braid_Int level

Level that grid is on

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

60 CONTENTS

13.6.2.8 braid_Int ncpoints

number of C points

13.6.2.9 _braid_CommHandle∗ recv_handle

Handle for nonblocking receives of braid_Vectors

13.6.2.10 braid_Int recv_index

-1 means no receive

13.6.2.11 _braid_CommHandle∗ send_handle

Handle for nonblocking sends of braid_Vectors

13.6.2.12 braid_Int send_index

-1 means no send

13.6.2.13 braid_Real∗ ta

time values (all points)

13.6.2.14 braid_Real∗ ta_alloc

original memory allocation for ta

13.6.2.15 braid_Vector∗ ua

unknown vectors (C-points only)

13.6.2.16 braid_Vector∗ ua_alloc

original memory allocation for ua

13.6.2.17 braid_Vector∗ va

restricted unknown vectors (all points, NULL on level 0)

13.6.2.18 braid_Vector∗ va_alloc

original memory allocation for va

13.6.2.19 braid_Vector∗ wa

rhs vectors f-v (all points, NULL on level 0)

13.6.2.20 braid_Vector∗ wa_alloc

original memory allocation for wa

The documentation for this struct was generated from the following file:

• _braid.h

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

13.7 _braid_PhiStatus Struct Reference 61

13.7 _braid_PhiStatus Struct Reference

Data Fields

• braid_Real tstart
• braid_Real tstop
• braid_Real accuracy
• braid_Int rfactor

13.7.1 Detailed Description

The user’s phi routine routine will receive a PhiStatus structure, which defines the status of XBraid at the given instant
for phi evaluation on some level during a run. The user accesses it through braid_PhiStatusGet∗∗() functions.

13.7.2 Field Documentation

13.7.2.1 braid_Real accuracy

advanced option allowing variable accuracy for implicit phi

13.7.2.2 braid_Int rfactor

if set by user, allows for subdivision of this interval for bettter time accuracy

13.7.2.3 braid_Real tstart

current time value

13.7.2.4 braid_Real tstop

time value to evolve towards, time value to the right of tstart

The documentation for this struct was generated from the following file:

• braid_status.h

14 File Documentation

14.1 _braid.h File Reference

Data Structures

• struct _braid_CommHandle
• struct _braid_AccuracyHandle
• struct _braid_Grid
• struct _braid_Core

Macros

• #define _braid_CommHandleElt(handle, elt) ((handle) -> elt)
• #define _braid_GridElt(grid, elt) ((grid) -> elt)

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

62 CONTENTS

• #define _braid_CoreElt(core, elt) ((core) -> elt)
• #define _braid_CoreFcn(core, fcn) (∗((core) -> fcn))
• #define _braid_MapFineToCoarse(findex, cfactor, cindex) (cindex = (findex)/(cfactor))
• #define _braid_MapCoarseToFine(cindex, cfactor, findex) (findex = (cindex)∗(cfactor))
• #define _braid_IsFPoint(index, cfactor) ((index)%(cfactor))
• #define _braid_IsCPoint(index, cfactor) (!_braid_IsFPoint(index, cfactor))

Functions

• braid_Int _braid_GetDistribution (braid_Core core, braid_Int ∗ilower_ptr, braid_Int ∗iupper_ptr)
• braid_Int _braid_GetProc (braid_Core core, braid_Int level, braid_Int index, braid_Int ∗proc_ptr)
• braid_Int _braid_CommRecvInit (braid_Core core, braid_Int level, braid_Int index, braid_Vector ∗vector_ptr, _-

braid_CommHandle ∗∗handle_ptr)
• braid_Int _braid_CommSendInit (braid_Core core, braid_Int level, braid_Int index, braid_Vector vector, _braid_-

CommHandle ∗∗handle_ptr)
• braid_Int _braid_CommWait (braid_Core core, _braid_CommHandle ∗∗handle_ptr)
• braid_Int _braid_UCommInit (braid_Core core, braid_Int level)
• braid_Int _braid_UCommInitF (braid_Core core, braid_Int level)
• braid_Int _braid_UCommWait (braid_Core core, braid_Int level)
• braid_Int _braid_UGetInterval (braid_Core core, braid_Int level, braid_Int interval_index, braid_Int ∗flo_ptr, braid-

_Int ∗fhi_ptr, braid_Int ∗ci_ptr)
• braid_Int _braid_UGetVectorRef (braid_Core core, braid_Int level, braid_Int index, braid_Vector ∗u_ptr)
• braid_Int _braid_USetVectorRef (braid_Core core, braid_Int level, braid_Int index, braid_Vector u)
• braid_Int _braid_UGetVector (braid_Core core, braid_Int level, braid_Int index, braid_Vector ∗u_ptr)
• braid_Int _braid_USetVector (braid_Core core, braid_Int level, braid_Int index, braid_Vector u)
• braid_Int _braid_UAccessVector (braid_Core core, braid_AccessStatus status, braid_Vector u)
• braid_Int _braid_Phi (braid_Core core, braid_Int level, braid_Int index, braid_Real accuracy, braid_Vector u, braid-

_Int ∗rfactor)
• braid_Int _braid_Step (braid_Core core, braid_Int level, braid_Int index, braid_Real accuracy, braid_Vector u)
• braid_Int _braid_Coarsen (braid_Core core, braid_Int level, braid_Int f_index, braid_Int c_index, braid_Vector

fvector, braid_Vector ∗cvector)
• braid_Int _braid_Refine (braid_Core core, braid_Int level, braid_Int f_index, braid_Int c_index, braid_Vector cvec-

tor, braid_Vector ∗fvector)
• braid_Int _braid_GridInit (braid_Core core, braid_Int level, braid_Int ilower, braid_Int iupper, _braid_Grid ∗∗grid-

_ptr)
• braid_Int _braid_GridDestroy (braid_Core core, _braid_Grid ∗grid)
• braid_Int _braid_InitGuess (braid_Core core, braid_Int level)
• braid_Int _braid_FCRelax (braid_Core core, braid_Int level)
• braid_Int _braid_FRestrict (braid_Core core, braid_Int level, braid_Int iter, braid_Real ∗rnorm_ptr)
• braid_Int _braid_FInterp (braid_Core core, braid_Int level, braid_Int iter, braid_Real rnorm)
• braid_Int _braid_FRefine (braid_Core core, braid_Int ∗refined_ptr)
• braid_Int _braid_FAccess (braid_Core core, braid_Real rnorm, braid_Int iter, braid_Int level, braid_Int done)
• braid_Int _braid_InitHierarchy (braid_Core core, _braid_Grid ∗fine_grid)

Variables

• FILE ∗ _braid_printfile

14.1.1 Detailed Description

Define headers for developer routines. This file contains the headers for developer routines.

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

14.1 _braid.h File Reference 63

14.1.2 Macro Definition Documentation

14.1.2.1 #define _braid_CommHandleElt(handle, elt) ((handle) -> elt)

Accessor for _braid_CommHandle attributes

14.1.2.2 #define _braid_CoreElt(core, elt) ((core) -> elt)

Accessor for _braid_Core attributes

14.1.2.3 #define _braid_CoreFcn(core, fcn) (∗((core) -> fcn))

Accessor for _braid_Core functions

14.1.2.4 #define _braid_GridElt(grid, elt) ((grid) -> elt)

Accessor for _braid_Grid attributes

14.1.2.5 #define _braid_IsCPoint(index, cfactor) (!_braid_IsFPoint(index, cfactor))

Boolean, returns whether a time index is an C-point

14.1.2.6 #define _braid_IsFPoint(index, cfactor) ((index)%(cfactor))

Boolean, returns whether a time index is an F-point

14.1.2.7 #define _braid_MapCoarseToFine(cindex, cfactor, findex) (findex = (cindex)∗(cfactor))

Map a coarse time index to a fine time index, assumes a uniform coarsening factor.

14.1.2.8 #define _braid_MapFineToCoarse(findex, cfactor, cindex) (cindex = (findex)/(cfactor))

Map a fine time index to a coarse time index, assumes a uniform coarsening factor.

14.1.3 Function Documentation

14.1.3.1 braid_Int _braid_Coarsen (braid_Core core, braid_Int level, braid_Int f_index, braid_Int c_index,
braid_Vector fvector, braid_Vector ∗ cvector)

Coarsen in space on level by calling the user’s coarsen function. The vector corresponding to the time step index
f_index on the fine grid is coarsened to the time step index c_index on the coarse grid. The output goes in cvector and
the input vector is fvector.

14.1.3.2 braid_Int _braid_CommRecvInit (braid_Core core, braid_Int level, braid_Int index, braid_Vector ∗ vector_ptr,
_braid_CommHandle ∗∗ handle_ptr)

Initialize a receive to go into vector_ptr for the given time index on level. Also return a comm handle handle_ptr for
querying later, to see if the receive has occurred.

14.1.3.3 braid_Int _braid_CommSendInit (braid_Core core, braid_Int level, braid_Int index, braid_Vector vector,
_braid_CommHandle ∗∗ handle_ptr)

Initialize a send of vector for the given time index on level. Also return a comm handle handle_ptr for querying later, to
see if the send has occurred.

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

64 CONTENTS

14.1.3.4 braid_Int _braid_CommWait (braid_Core core, _braid_CommHandle ∗∗ handle_ptr)

Block on the comm handle handle_ptr until the MPI operation (send or recv) has completed

14.1.3.5 braid_Int _braid_FAccess (braid_Core core, braid_Real rnorm, braid_Int iter, braid_Int level, braid_Int done)

Call the user’s access function in order to give access to XBraid and the current vector at grid level and iteration ∗iter.
Most commonly, this lets the user write solutions to screen, disk, etc... The quantity rnorm denotes the last computed
residual norm, and done is a boolean indicating whether XBraid has finished iterating and this is the last Access call.

14.1.3.6 braid_Int _braid_FCRelax (braid_Core core, braid_Int level)

Do nu sweeps of F-then-C relaxation on level

14.1.3.7 braid_Int _braid_FInterp (braid_Core core, braid_Int level, braid_Int iter, braid_Real rnorm)

F-Relax on level and interpolate to level-1

The output is set in the braid_Grid in core, so that the vector u on level is created by interpolating from level+1.

If the user has set spatial refinement, then this user-defined routine is also called.

Parameters

core braid_Core (_braid_Core) struct
level interp from level to level+1

iter current iteration number (for user info)
rnorm residual norm (if level 0)

14.1.3.8 braid_Int _braid_FRefine (braid_Core core, braid_Int ∗ refined_ptr)

Create a new fine grid based on user refinement factor information, then F-relax and interpolate to the new fine grid
and create a new multigrid hierarchy. In general, this will require load re-balancing as well.

RDF: Todo, routine is unwritten

14.1.3.9 braid_Int _braid_FRestrict (braid_Core core, braid_Int level, braid_Int iter, braid_Real ∗ rnorm_ptr)

F-Relax on level and then restrict to level+1

The output is set in the braid_Grid in core, so that the restricted vectors va and wa will be created, representing level+1
versions of the unknown and rhs vectors.

If the user has set spatial coarsening, then this user-defined routine is also called.

If level==0, then rnorm_ptr will contain the residual norm.

Parameters

core braid_Core (_braid_Core) struct
level restrict from level to level+1

iter current iteration number (for user info)
rnorm_ptr pointer to residual norm (if level 0)

14.1.3.10 braid_Int _braid_GetDistribution (braid_Core core, braid_Int ∗ ilower_ptr, braid_Int ∗ iupper_ptr)

Determine processor distribution. This must agree with GetProc(). For the processor rank calling this function, it returns
the smallest and largest time indices (ilower_ptr and iupper_ptr) that belong to that processor (the indices may ∗ be F
or C points).

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

14.1 _braid.h File Reference 65

14.1.3.11 braid_Int _braid_GetProc (braid_Core core, braid_Int level, braid_Int index, braid_Int ∗ proc_ptr)

Return the processor number in proc_ptr on which the time step index lives for the given level. ∗ Returns -1 if index is
out of range

14.1.3.12 braid_Int _braid_GridDestroy (braid_Core core, _braid_Grid ∗ grid)

Destroy an XBraid grid

14.1.3.13 braid_Int _braid_GridInit (braid_Core core, braid_Int level, braid_Int ilower, braid_Int iupper, _braid_Grid
∗∗ grid_ptr)

Create a new grid object grid_ptr in core at level

ilower and iupper correspond to the lower and upper time index values for this processor on this grid.

14.1.3.14 braid_Int _braid_InitGuess (braid_Core core, braid_Int level)

Set initial guess at C-points on level

14.1.3.15 braid_Int _braid_InitHierarchy (braid_Core core, _braid_Grid ∗ fine_grid)

Initialize (and re-initialize) hierarchy

14.1.3.16 braid_Int _braid_Phi (braid_Core core, braid_Int level, braid_Int index, braid_Real accuracy, braid_Vector
u, braid_Int ∗ rfactor)

Apply Phi to the vector u

This is the vector corresponding to the time step index on level. accuracy is a user set variable to allow for tuning
the accuracy of spatial solvesfor implicit stepping. And, rfactor allows the user to subdivide time intervals for accuracy
purposes.

14.1.3.17 braid_Int _braid_Refine (braid_Core core, braid_Int level, braid_Int f_index, braid_Int c_index, braid_Vector
cvector, braid_Vector ∗ fvector)

Refine in space on level by calling the user’s refine function. The vector corresponding to the time step index c_index
on the coarse grid is refined to the time step index f_index on the fine grid. The output goes in fvector and the input
vector is cvector.

14.1.3.18 braid_Int _braid_Step (braid_Core core, braid_Int level, braid_Int index, braid_Real accuracy, braid_Vector
u)

Integrate one time step at time step index to time step index+1

14.1.3.19 braid_Int _braid_UAccessVector (braid_Core core, braid_AccessStatus status, braid_Vector u)

Call user’s access function in order to give access to XBraid and the current vector. Most commonly, this lets the user
write u to screen, disk, etc... The vector u corresponds to time step index on level. status holds state information about
the current XBraid iteration, time value, etc...

14.1.3.20 braid_Int _braid_UCommInit (braid_Core core, braid_Int level)

Working on all intervals

At level, post a receive for the point to the left of ilower (regardless whether ilower is F or C). Then, post a send of iupper
if iupper is a C point.

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

66 CONTENTS

14.1.3.21 braid_Int _braid_UCommInitF (braid_Core core, braid_Int level)

Working only on F-pt intervals

At level, only post a receive for the point to the left of ilower if ilower is an F point. Then, post a send of iupper if iupper
is a C point.

14.1.3.22 braid_Int _braid_UCommWait (braid_Core core, braid_Int level)

Finish up communication

On level, wait on both the recv and send handles at this level.

14.1.3.23 braid_Int _braid_UGetInterval (braid_Core core, braid_Int level, braid_Int interval_index, braid_Int ∗ flo_ptr,
braid_Int ∗ fhi_ptr, braid_Int ∗ ci_ptr)

Retrieve the time step indices at this level which correspond to the FC interval given by interval_index. ci_ptr is the time
step index for the C point and flo_ptr and fhi_ptr are the smallest and largest F point indices in this interval. flo = ci +1,
and fhi = ci + coarsening_factor - 1

14.1.3.24 braid_Int _braid_UGetVector (braid_Core core, braid_Int level, braid_Int index, braid_Vector ∗ u_ptr)

Returns the u-vector in u_ptr on grid level at point index. If index is my "receive index" (as set by UCommInit(), for
example), the u-vector will be received from a neighbor processor. If index is within my index range and is also a
C-point, the saved value of u will be used. A NULL value is returned otherwise.

14.1.3.25 braid_Int _braid_UGetVectorRef (braid_Core core, braid_Int level, braid_Int index, braid_Vector ∗ u_ptr)

Returns a reference to the local u-vector in u_ptr for the grid level at point index. Caveat: if index is not a C-point and
within my index range, NULL is returned.

14.1.3.26 braid_Int _braid_USetVector (braid_Core core, braid_Int level, braid_Int index, braid_Vector u)

Sets the u-vector on grid level at point index. If index is my "send index" (as set by UCommInit(), for example), a send
is initiated to a neighbor processor. If index is within my index range and is also a C-point, the value is saved locally.

14.1.3.27 braid_Int _braid_USetVectorRef (braid_Core core, braid_Int level, braid_Int index, braid_Vector u)

Stores a reference to the vector u on grid level at point index. If index is not a C-point and within this processor’s range
of time points, then nothing is done.

14.1.4 Variable Documentation

14.1.4.1 FILE∗ _braid_printfile

This is the print file for redirecting stdout for all XBraid screen output

14.2 braid.h File Reference

Typedefs

• typedef struct _braid_App_struct ∗ braid_App
• typedef struct

_braid_Vector_struct ∗ braid_Vector
• typedef braid_Int(∗ braid_PtFcnPhi)(braid_App app, braid_Vector u, braid_PhiStatus status)

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

14.2 braid.h File Reference 67

• typedef braid_Int(∗ braid_PtFcnInit)(braid_App app, braid_Real t, braid_Vector ∗u_ptr)
• typedef braid_Int(∗ braid_PtFcnClone)(braid_App app, braid_Vector u, braid_Vector ∗v_ptr)
• typedef braid_Int(∗ braid_PtFcnFree)(braid_App app, braid_Vector u)
• typedef braid_Int(∗ braid_PtFcnSum)(braid_App app, braid_Real alpha, braid_Vector x, braid_Real beta, braid-

_Vector y)
• typedef braid_Int(∗ braid_PtFcnSpatialNorm)(braid_App app, braid_Vector u, braid_Real ∗norm_ptr)
• typedef braid_Int(∗ braid_PtFcnAccess)(braid_App app, braid_Vector u, braid_AccessStatus status)
• typedef braid_Int(∗ braid_PtFcnBufSize)(braid_App app, braid_Int ∗size_ptr)
• typedef braid_Int(∗ braid_PtFcnBufPack)(braid_App app, braid_Vector u, void ∗buffer, braid_Int ∗size_ptr)
• typedef braid_Int(∗ braid_PtFcnBufUnpack)(braid_App app, void ∗buffer, braid_Vector ∗u_ptr)
• typedef braid_Int(∗ braid_PtFcnCoarsen)(braid_App app, braid_Vector fu, braid_Vector ∗cu_ptr, braid_Coarsen-

RefStatus status)
• typedef braid_Int(∗ braid_PtFcnRefine)(braid_App app, braid_Vector cu, braid_Vector ∗fu_ptr, braid_Coarsen-

RefStatus status)
• typedef struct _braid_Core_struct ∗ braid_Core

Functions

• braid_Int braid_Init (MPI_Comm comm_world, MPI_Comm comm, braid_Real tstart, braid_Real tstop, braid_Int
ntime, braid_App app, braid_PtFcnPhi phi, braid_PtFcnInit init, braid_PtFcnClone clone, braid_PtFcnFree free,
braid_PtFcnSum sum, braid_PtFcnSpatialNorm spatialnorm, braid_PtFcnAccess access, braid_PtFcnBufSize
bufsize, braid_PtFcnBufPack bufpack, braid_PtFcnBufUnpack bufunpack, braid_Core ∗core_ptr)

• braid_Int braid_Drive (braid_Core core)
• braid_Int braid_Destroy (braid_Core core)
• braid_Int braid_PrintStats (braid_Core core)
• braid_Int braid_SetLoosexTol (braid_Core core, braid_Int level, braid_Real loose_tol)
• braid_Int braid_SetTightxTol (braid_Core core, braid_Int level, braid_Real tight_tol)
• braid_Int braid_SetMaxLevels (braid_Core core, braid_Int max_levels)
• braid_Int braid_SetMinCoarse (braid_Core core, braid_Int min_coarse)
• braid_Int braid_SetAbsTol (braid_Core core, braid_Real atol)
• braid_Int braid_SetRelTol (braid_Core core, braid_Real rtol)
• braid_Int braid_SetNRelax (braid_Core core, braid_Int level, braid_Int nrelax)
• braid_Int braid_SetCFactor (braid_Core core, braid_Int level, braid_Int cfactor)
• braid_Int braid_SetMaxIter (braid_Core core, braid_Int max_iter)
• braid_Int braid_SetFMG (braid_Core core)
• braid_Int braid_SetTemporalNorm (braid_Core core, braid_Int tnorm)
• braid_Int braid_SetNFMGVcyc (braid_Core core, braid_Int nfmg_Vcyc)
• braid_Int braid_SetSpatialCoarsen (braid_Core core, braid_PtFcnCoarsen coarsen)
• braid_Int braid_SetSpatialRefine (braid_Core core, braid_PtFcnRefine refine)
• braid_Int braid_SetPrintLevel (braid_Core core, braid_Int print_level)
• braid_Int braid_SetPrintFile (braid_Core core, const char ∗printfile_name)
• braid_Int braid_SetAccessLevel (braid_Core core, braid_Int access_level)
• braid_Int braid_SplitCommworld (const MPI_Comm ∗comm_world, braid_Int px, MPI_Comm ∗comm_x, MPI_-

Comm ∗comm_t)
• braid_Int braid_GetNumIter (braid_Core core, braid_Int ∗niter_ptr)
• braid_Int braid_GetRNorm (braid_Core core, braid_Real ∗rnorm_ptr)

14.2.1 Detailed Description

Define headers for user interface routines. This file contains routines used to allow the user to initialize, run and get and
set a XBraid solver.

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

68 CONTENTS

14.3 braid_defs.h File Reference

Macros

• #define _braid_TAlloc(type, count) ((type ∗)malloc((size_t)(sizeof(type) ∗ (count))))

• #define _braid_CTAlloc(type, count) ((type ∗)calloc((size_t)(count), (size_t)sizeof(type)))

• #define _braid_TReAlloc(ptr, type, count) ((type ∗)realloc((char ∗)ptr, (size_t)(sizeof(type) ∗ (count))))

• #define _braid_TFree(ptr) (free((char ∗)ptr), ptr = NULL)

Typedefs

• typedef int braid_Int

• typedef double braid_Real

Variables

• braid_Int _braid_error_flag

14.3.1 Detailed Description

Definitions of types, error flags, etc...

14.3.2 Macro Definition Documentation

14.3.2.1 #define _braid_CTAlloc(type, count) ((type ∗)calloc((size_t)(count), (size_t)sizeof(type)))

Allocation macro

14.3.2.2 #define _braid_TAlloc(type, count) ((type ∗)malloc((size_t)(sizeof(type) ∗ (count))))

Allocation macro

14.3.2.3 #define _braid_TFree(ptr) (free((char ∗)ptr), ptr = NULL)

Free memory macro

14.3.2.4 #define _braid_TReAlloc(ptr, type, count) ((type ∗)realloc((char ∗)ptr, (size_t)(sizeof(type) ∗ (count))))

Re-allocation macro

14.3.3 Typedef Documentation

14.3.3.1 typedef int braid_Int

Defines integer type

14.3.3.2 typedef double braid_Real

Defines floating point type

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

14.4 braid_status.h File Reference 69

14.3.4 Variable Documentation

14.3.4.1 braid_Int _braid_error_flag

This is the global XBraid error flag. If it is ever nonzero, an error has occurred.

14.4 braid_status.h File Reference

Data Structures

• struct _braid_AccessStatus
• struct _braid_CoarsenRefStatus
• struct _braid_PhiStatus

Macros

• #define _braid_StatusElt(status, elt) ((status) -> elt)

Typedefs

• typedef struct
_braid_AccessStatus_struct ∗ braid_AccessStatus

• typedef struct
_braid_CoarsenRefStatus_struct ∗ braid_CoarsenRefStatus

• typedef struct
_braid_PhiStatus_struct ∗ braid_PhiStatus

Functions

• braid_Int _braid_AccessStatusInit (braid_Real t, braid_Real rnorm, braid_Int iter, braid_Int level, braid_Int done,
braid_Int wrapper_test, braid_AccessStatus status)

• braid_Int _braid_AccessStatusDestroy (braid_AccessStatus status)
• braid_Int braid_AccessStatusGetT (braid_AccessStatus status, braid_Real ∗t_ptr)
• braid_Int braid_AccessStatusGetResidual (braid_AccessStatus status, braid_Real ∗rnorm_ptr)
• braid_Int braid_AccessStatusGetIter (braid_AccessStatus status, braid_Int ∗iter_ptr)
• braid_Int braid_AccessStatusGetLevel (braid_AccessStatus status, braid_Int ∗level_ptr)
• braid_Int braid_AccessStatusGetDone (braid_AccessStatus status, braid_Int ∗done_ptr)
• braid_Int braid_AccessStatusGetWrapperTest (braid_AccessStatus status, braid_Int ∗wtest_ptr)
• braid_Int braid_AccessStatusGetTILD (braid_AccessStatus status, braid_Real ∗t_ptr, braid_Int ∗iter_ptr, braid_-

Int ∗level_ptr, braid_Int ∗done_ptr)
• braid_Int _braid_CoarsenRefStatusInit (braid_Real tstart, braid_Real f_tprior, braid_Real f_tstop, braid_Real c_-

tprior, braid_Real c_tstop, braid_CoarsenRefStatus status)
• braid_Int _braid_CoarsenRefStatusDestroy (braid_CoarsenRefStatus status)
• braid_Int braid_CoarsenRefStatusGetTstart (braid_CoarsenRefStatus status, braid_Real ∗tstart_ptr)
• braid_Int braid_CoarsenRefStatusGetFTstop (braid_CoarsenRefStatus status, braid_Real ∗f_tstop_ptr)
• braid_Int braid_CoarsenRefStatusGetFTprior (braid_CoarsenRefStatus status, braid_Real ∗f_tprior_ptr)
• braid_Int braid_CoarsenRefStatusGetCTstop (braid_CoarsenRefStatus status, braid_Real ∗c_tstop_ptr)
• braid_Int braid_CoarsenRefStatusGetCTprior (braid_CoarsenRefStatus status, braid_Real ∗c_tprior_ptr)
• braid_Int braid_CoarsenRefStatusGetTpriorTstop (braid_CoarsenRefStatus status, braid_Real ∗tstart_ptr, braid-

_Real ∗f_tprior_ptr, braid_Real ∗f_tstop_ptr, braid_Real ∗c_tprior_ptr, braid_Real ∗c_tstop_ptr)

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

70 CONTENTS

• braid_Int _braid_PhiStatusInit (braid_Real tstart, braid_Real tstop, braid_Real accuracy, braid_PhiStatus status)
• braid_Int _braid_PhiStatusDestroy (braid_PhiStatus status)
• braid_Int braid_PhiStatusGetTstart (braid_PhiStatus status, braid_Real ∗tstart_ptr)
• braid_Int braid_PhiStatusGetTstop (braid_PhiStatus status, braid_Real ∗tstop_ptr)
• braid_Int braid_PhiStatusGetAccuracy (braid_PhiStatus status, braid_Real ∗accuracy_ptr)
• braid_Int braid_PhiStatusSetRFactor (braid_PhiStatus status, braid_Real rfactor)
• braid_Int braid_PhiStatusGetTstartTstop (braid_PhiStatus status, braid_Real ∗tstart_ptr, braid_Real ∗tstop_ptr)

14.4.1 Detailed Description

Define headers for XBraid status structures, status get/set routines and status create/destroy routines.

14.5 braid_test.h File Reference

Functions

• braid_Int braid_TestInitAccess (braid_App app, MPI_Comm comm_x, FILE ∗fp, braid_Real t, braid_PtFcnInit init,
braid_PtFcnAccess access, braid_PtFcnFree free)

• braid_Int braid_TestClone (braid_App app, MPI_Comm comm_x, FILE ∗fp, braid_Real t, braid_PtFcnInit init,
braid_PtFcnAccess access, braid_PtFcnFree free, braid_PtFcnClone clone)

• braid_Int braid_TestSum (braid_App app, MPI_Comm comm_x, FILE ∗fp, braid_Real t, braid_PtFcnInit init, braid-
_PtFcnAccess access, braid_PtFcnFree free, braid_PtFcnClone clone, braid_PtFcnSum sum)

• braid_Int braid_TestSpatialNorm (braid_App app, MPI_Comm comm_x, FILE ∗fp, braid_Real t, braid_PtFcnInit
init, braid_PtFcnFree free, braid_PtFcnClone clone, braid_PtFcnSum sum, braid_PtFcnSpatialNorm spatialnorm)

• braid_Int braid_TestBuf (braid_App app, MPI_Comm comm_x, FILE ∗fp, braid_Real t, braid_PtFcnInit init, braid_-
PtFcnFree free, braid_PtFcnSum sum, braid_PtFcnSpatialNorm spatialnorm, braid_PtFcnBufSize bufsize, braid-
_PtFcnBufPack bufpack, braid_PtFcnBufUnpack bufunpack)

• braid_Int braid_TestCoarsenRefine (braid_App app, MPI_Comm comm_x, FILE ∗fp, braid_Real t, braid_Real fdt,
braid_Real cdt, braid_PtFcnInit init, braid_PtFcnAccess access, braid_PtFcnFree free, braid_PtFcnClone clone,
braid_PtFcnSum sum, braid_PtFcnSpatialNorm spatialnorm, braid_PtFcnCoarsen coarsen, braid_PtFcnRefine
refine)

• braid_Int braid_TestAll (braid_App app, MPI_Comm comm_x, FILE ∗fp, braid_Real t, braid_Real fdt, braid_-
Real cdt, braid_PtFcnInit init, braid_PtFcnFree free, braid_PtFcnClone clone, braid_PtFcnSum sum, braid_Pt-
FcnSpatialNorm spatialnorm, braid_PtFcnBufSize bufsize, braid_PtFcnBufPack bufpack, braid_PtFcnBufUnpack
bufunpack, braid_PtFcnCoarsen coarsen, braid_PtFcnRefine refine)

14.5.1 Detailed Description

Define headers for XBraid test routines. This file contains routines used to test a user’s XBraid wrapper routines one-
by-one.

14.6 util.h File Reference

Functions

• braid_Int _braid_ProjectInterval (braid_Int ilower, braid_Int iupper, braid_Int index, braid_Int stride, braid_Int
∗pilower, braid_Int ∗piupper)

• braid_Int _braid_SetAccuracy (braid_Real rnorm, braid_Real loose_tol, braid_Real tight_tol, braid_Real old-
Accuracy, braid_Real tol, braid_Real ∗paccuracy)

• braid_Int _braid_printf (const char ∗format,...)

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

14.6 util.h File Reference 71

• braid_Int _braid_ParFprintfFlush (FILE ∗file, braid_Int myid, char ∗message,...)
• braid_Int _braid_Max (braid_Real ∗array, braid_Int size, braid_Real ∗max_val)

14.6.1 Detailed Description

Define headers for utility routines. This file contains the headers for utility routines. Essentially, if a routine does not
take braid_Core (or other XBraid specific structs) as an argument, then it’s a utility routine.

14.6.2 Function Documentation

14.6.2.1 braid_Int _braid_Max (braid_Real ∗ array, braid_Int size, braid_Real ∗ max_val)

This function finds the maximum value in a braid_Real array

14.6.2.2 braid_Int _braid_ParFprintfFlush (FILE ∗ file, braid_Int myid, char ∗ message, ...)

This is a function that allows for "sane" printing of information in parallel. Currently, only myid = 0 prints, but this can be
updated as needs change.

The string message is printed and can be multiple parameters in the standard ∗ C-format, like

message = ’%1.2e is a format string’, 1.24

14.6.2.3 braid_Int _braid_printf (const char ∗ format, ...)

If set, print to _braid_printfile and then flush. Else print to standard out.

The string format can be multiple parameters in the standard ∗ C-format, like

format = ’%1.2e is a format string’, 1.24

14.6.2.4 braid_Int _braid_ProjectInterval (braid_Int ilower, braid_Int iupper, braid_Int index, braid_Int stride, braid_Int
∗ pilower, braid_Int ∗ piupper)

Project an interval onto a strided index space that contains the index ’index’ and has stride ’stride’. An empty projection
is represented by ilower > iupper.

14.6.2.5 braid_Int _braid_SetAccuracy (braid_Real rnorm, braid_Real loose_tol, braid_Real tight_tol, braid_Real
oldAccuracy, braid_Real tol, braid_Real ∗ paccuracy)

Determine the accuracy used for the spatial solves based on the ratio of the current residual norm and the stopping
tolerance.

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

Index

_braid.h, 61
_braid_Coarsen, 63
_braid_CommHandleElt, 63
_braid_CommRecvInit, 63
_braid_CommSendInit, 63
_braid_CommWait, 63
_braid_CoreElt, 63
_braid_CoreFcn, 63
_braid_FAccess, 64
_braid_FCRelax, 64
_braid_FInterp, 64
_braid_FRefine, 64
_braid_FRestrict, 64
_braid_GetDistribution, 64
_braid_GetProc, 64
_braid_GridDestroy, 65
_braid_GridElt, 63
_braid_GridInit, 65
_braid_InitGuess, 65
_braid_InitHierarchy, 65
_braid_IsCPoint, 63
_braid_IsFPoint, 63
_braid_MapCoarseToFine, 63
_braid_MapFineToCoarse, 63
_braid_Phi, 65
_braid_Refine, 65
_braid_Step, 65
_braid_UAccessVector, 65
_braid_UCommInit, 65
_braid_UCommInitF, 65
_braid_UCommWait, 66
_braid_UGetInterval, 66
_braid_UGetVector, 66
_braid_UGetVectorRef, 66
_braid_USetVector, 66
_braid_USetVectorRef, 66
_braid_printfile, 66

_braid_AccessStatus, 51
done, 51
iter, 51
level, 51
rnorm, 51
t, 51
wrapper_test, 51

_braid_AccessStatusDestroy
XBraid status routines, 39

_braid_AccessStatusInit
XBraid status routines, 39

_braid_AccuracyHandle, 51
loose, 52
matchF, 52

old_value, 52
tight, 52
tight_used, 52
value, 52

_braid_CTAlloc
braid_defs.h, 68

_braid_Coarsen
_braid.h, 63

_braid_CoarsenRefStatus, 52
c_tprior, 53
c_tstop, 53
f_tprior, 53
f_tstop, 53
tstart, 53

_braid_CoarsenRefStatusDestroy
XBraid status routines, 39

_braid_CoarsenRefStatusInit
XBraid status routines, 39

_braid_CommHandle, 53
buffer, 53
num_requests, 54
request_type, 54
requests, 54
status, 54
vector_ptr, 54

_braid_CommHandleElt
_braid.h, 63

_braid_CommRecvInit
_braid.h, 63

_braid_CommSendInit
_braid.h, 63

_braid_CommWait
_braid.h, 63

_braid_Core, 54
access, 55
access_level, 55
accuracy, 55
app, 55
astatus, 55
bufpack, 55
bufsize, 56
bufunpack, 56
cfactors, 56
cfdefault, 56
clone, 56
coarsen, 56
comm, 56
comm_world, 56
cstatus, 56
fmg, 56
free, 56

INDEX 73

globaltime, 56
grids, 56
gupper, 56
init, 56
localtime, 57
max_iter, 57
max_levels, 57
min_coarse, 57
nfmg_Vcyc, 57
niter, 57
nlevels, 57
nrdefault, 57
nrels, 57
ntime, 57
phi, 57
print_level, 57
pstatus, 57
refine, 57
rfactors, 58
rnorm, 58
rtol, 58
spatialnorm, 58
sum, 58
tnorm, 58
tnorm_a, 58
tol, 58
tstart, 58
tstop, 58

_braid_CoreElt
_braid.h, 63

_braid_CoreFcn
_braid.h, 63

_braid_FAccess
_braid.h, 64

_braid_FCRelax
_braid.h, 64

_braid_FInterp
_braid.h, 64

_braid_FRefine
_braid.h, 64

_braid_FRestrict
_braid.h, 64

_braid_GetDistribution
_braid.h, 64

_braid_GetProc
_braid.h, 64

_braid_Grid, 58
cfactor, 59
clower, 59
cupper, 59
gupper, 59
ilower, 59
iupper, 59
level, 59

ncpoints, 59
recv_handle, 60
recv_index, 60
send_handle, 60
send_index, 60
ta, 60
ta_alloc, 60
ua, 60
ua_alloc, 60
va, 60
va_alloc, 60
wa, 60
wa_alloc, 60

_braid_GridDestroy
_braid.h, 65

_braid_GridElt
_braid.h, 63

_braid_GridInit
_braid.h, 65

_braid_InitGuess
_braid.h, 65

_braid_InitHierarchy
_braid.h, 65

_braid_IsCPoint
_braid.h, 63

_braid_IsFPoint
_braid.h, 63

_braid_MapCoarseToFine
_braid.h, 63

_braid_MapFineToCoarse
_braid.h, 63

_braid_Max
util.h, 71

_braid_ParFprintfFlush
util.h, 71

_braid_Phi
_braid.h, 65

_braid_PhiStatus, 61
accuracy, 61
rfactor, 61
tstart, 61
tstop, 61

_braid_PhiStatusDestroy
XBraid status routines, 41

_braid_PhiStatusInit
XBraid status routines, 41

_braid_ProjectInterval
util.h, 71

_braid_Refine
_braid.h, 65

_braid_SetAccuracy
util.h, 71

_braid_StatusElt
XBraid status routines, 39

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

74 INDEX

_braid_Step
_braid.h, 65

_braid_TAlloc
braid_defs.h, 68

_braid_TFree
braid_defs.h, 68

_braid_TReAlloc
braid_defs.h, 68

_braid_UAccessVector
_braid.h, 65

_braid_UCommInit
_braid.h, 65

_braid_UCommInitF
_braid.h, 65

_braid_UCommWait
_braid.h, 66

_braid_UGetInterval
_braid.h, 66

_braid_UGetVector
_braid.h, 66

_braid_UGetVectorRef
_braid.h, 66

_braid_USetVector
_braid.h, 66

_braid_USetVectorRef
_braid.h, 66

_braid_error_flag
braid_defs.h, 69

_braid_printf
util.h, 71

_braid_printfile
_braid.h, 66

access
_braid_Core, 55

access_level
_braid_Core, 55

accuracy
_braid_Core, 55
_braid_PhiStatus, 61

app
_braid_Core, 55

astatus
_braid_Core, 55

braid.h, 66
braid_AccessStatus

XBraid status routines, 39
braid_AccessStatusGetDone

XBraid status routines, 41
braid_AccessStatusGetIter

XBraid status routines, 41
braid_AccessStatusGetLevel

XBraid status routines, 41

braid_AccessStatusGetResidual
XBraid status routines, 42

braid_AccessStatusGetT
XBraid status routines, 42

braid_AccessStatusGetTILD
XBraid status routines, 42

braid_AccessStatusGetWrapperTest
XBraid status routines, 42

braid_App
User-written routines, 26

braid_CoarsenRefStatus
XBraid status routines, 39

braid_CoarsenRefStatusGetCTprior
XBraid status routines, 42

braid_CoarsenRefStatusGetCTstop
XBraid status routines, 43

braid_CoarsenRefStatusGetFTprior
XBraid status routines, 43

braid_CoarsenRefStatusGetFTstop
XBraid status routines, 43

braid_CoarsenRefStatusGetTpriorTstop
XBraid status routines, 43

braid_CoarsenRefStatusGetTstart
XBraid status routines, 43

braid_Core
General Interface routines, 30

braid_Destroy
General Interface routines, 31

braid_Drive
General Interface routines, 32

braid_GetNumIter
General Interface routines, 32

braid_GetRNorm
General Interface routines, 32

braid_Init
General Interface routines, 32

braid_Int
braid_defs.h, 68

braid_PhiStatus
XBraid status routines, 39

braid_PhiStatusGetAccuracy
XBraid status routines, 44

braid_PhiStatusGetTstart
XBraid status routines, 44

braid_PhiStatusGetTstartTstop
XBraid status routines, 44

braid_PhiStatusGetTstop
XBraid status routines, 44

braid_PhiStatusSetRFactor
XBraid status routines, 44

braid_PrintStats
General Interface routines, 33

braid_PtFcnAccess
User-written routines, 26

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

INDEX 75

braid_PtFcnBufPack
User-written routines, 26

braid_PtFcnBufSize
User-written routines, 26

braid_PtFcnBufUnpack
User-written routines, 27

braid_PtFcnClone
User-written routines, 27

braid_PtFcnCoarsen
User-written routines, 27

braid_PtFcnFree
User-written routines, 27

braid_PtFcnInit
User-written routines, 27

braid_PtFcnPhi
User-written routines, 27

braid_PtFcnRefine
User-written routines, 27

braid_PtFcnSpatialNorm
User-written routines, 27

braid_PtFcnSum
User-written routines, 28

braid_Real
braid_defs.h, 68

braid_SetAbsTol
General Interface routines, 33

braid_SetAccessLevel
General Interface routines, 33

braid_SetCFactor
General Interface routines, 33

braid_SetFMG
General Interface routines, 34

braid_SetLoosexTol
General Interface routines, 34

braid_SetMaxIter
General Interface routines, 34

braid_SetMaxLevels
General Interface routines, 34

braid_SetMinCoarse
General Interface routines, 34

braid_SetNFMGVcyc
General Interface routines, 34

braid_SetNRelax
General Interface routines, 35

braid_SetPrintFile
General Interface routines, 35

braid_SetPrintLevel
General Interface routines, 35

braid_SetRelTol
General Interface routines, 35

braid_SetSpatialCoarsen
General Interface routines, 35

braid_SetSpatialRefine
General Interface routines, 36

braid_SetTemporalNorm
General Interface routines, 36

braid_SetTightxTol
General Interface routines, 36

braid_SplitCommworld
General Interface routines, 36

braid_TestAll
XBraid test routines, 46

braid_TestBuf
XBraid test routines, 47

braid_TestClone
XBraid test routines, 47

braid_TestCoarsenRefine
XBraid test routines, 48

braid_TestInitAccess
XBraid test routines, 48

braid_TestSpatialNorm
XBraid test routines, 49

braid_TestSum
XBraid test routines, 49

braid_Vector
User-written routines, 28

braid_defs.h, 68
_braid_CTAlloc, 68
_braid_TAlloc, 68
_braid_TFree, 68
_braid_TReAlloc, 68
_braid_error_flag, 69
braid_Int, 68
braid_Real, 68

braid_status.h, 69
braid_test.h, 70
buffer

_braid_CommHandle, 53
bufpack

_braid_Core, 55
bufsize

_braid_Core, 56
bufunpack

_braid_Core, 56

c_tprior
_braid_CoarsenRefStatus, 53

c_tstop
_braid_CoarsenRefStatus, 53

cfactor
_braid_Grid, 59

cfactors
_braid_Core, 56

cfdefault
_braid_Core, 56

clone
_braid_Core, 56

clower

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

76 INDEX

_braid_Grid, 59
coarsen

_braid_Core, 56
comm

_braid_Core, 56
comm_world

_braid_Core, 56
cstatus

_braid_Core, 56
cupper

_braid_Grid, 59

done
_braid_AccessStatus, 51

f_tprior
_braid_CoarsenRefStatus, 53

f_tstop
_braid_CoarsenRefStatus, 53

fmg
_braid_Core, 56

free
_braid_Core, 56

General Interface routines, 30
braid_Core, 30
braid_Destroy, 31
braid_Drive, 32
braid_GetNumIter, 32
braid_GetRNorm, 32
braid_Init, 32
braid_PrintStats, 33
braid_SetAbsTol, 33
braid_SetAccessLevel, 33
braid_SetCFactor, 33
braid_SetFMG, 34
braid_SetLoosexTol, 34
braid_SetMaxIter, 34
braid_SetMaxLevels, 34
braid_SetMinCoarse, 34
braid_SetNFMGVcyc, 34
braid_SetNRelax, 35
braid_SetPrintFile, 35
braid_SetPrintLevel, 35
braid_SetRelTol, 35
braid_SetSpatialCoarsen, 35
braid_SetSpatialRefine, 36
braid_SetTemporalNorm, 36
braid_SetTightxTol, 36
braid_SplitCommworld, 36

globaltime
_braid_Core, 56

grids
_braid_Core, 56

gupper

_braid_Core, 56
_braid_Grid, 59

ilower
_braid_Grid, 59

init
_braid_Core, 56

iter
_braid_AccessStatus, 51

iupper
_braid_Grid, 59

level
_braid_AccessStatus, 51
_braid_Grid, 59

localtime
_braid_Core, 57

loose
_braid_AccuracyHandle, 52

matchF
_braid_AccuracyHandle, 52

max_iter
_braid_Core, 57

max_levels
_braid_Core, 57

min_coarse
_braid_Core, 57

ncpoints
_braid_Grid, 59

nfmg_Vcyc
_braid_Core, 57

niter
_braid_Core, 57

nlevels
_braid_Core, 57

nrdefault
_braid_Core, 57

nrels
_braid_Core, 57

ntime
_braid_Core, 57

num_requests
_braid_CommHandle, 54

old_value
_braid_AccuracyHandle, 52

phi
_braid_Core, 57

print_level
_braid_Core, 57

pstatus
_braid_Core, 57

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

INDEX 77

recv_handle
_braid_Grid, 60

recv_index
_braid_Grid, 60

refine
_braid_Core, 57

request_type
_braid_CommHandle, 54

requests
_braid_CommHandle, 54

rfactor
_braid_PhiStatus, 61

rfactors
_braid_Core, 58

rnorm
_braid_AccessStatus, 51
_braid_Core, 58

rtol
_braid_Core, 58

send_handle
_braid_Grid, 60

send_index
_braid_Grid, 60

spatialnorm
_braid_Core, 58

status
_braid_CommHandle, 54

sum
_braid_Core, 58

t
_braid_AccessStatus, 51

ta
_braid_Grid, 60

ta_alloc
_braid_Grid, 60

tight
_braid_AccuracyHandle, 52

tight_used
_braid_AccuracyHandle, 52

tnorm
_braid_Core, 58

tnorm_a
_braid_Core, 58

tol
_braid_Core, 58

tstart
_braid_CoarsenRefStatus, 53
_braid_Core, 58
_braid_PhiStatus, 61

tstop
_braid_Core, 58
_braid_PhiStatus, 61

ua
_braid_Grid, 60

ua_alloc
_braid_Grid, 60

User interface routines, 29
User-written routines, 25

braid_App, 26
braid_PtFcnAccess, 26
braid_PtFcnBufPack, 26
braid_PtFcnBufSize, 26
braid_PtFcnBufUnpack, 27
braid_PtFcnClone, 27
braid_PtFcnCoarsen, 27
braid_PtFcnFree, 27
braid_PtFcnInit, 27
braid_PtFcnPhi, 27
braid_PtFcnRefine, 27
braid_PtFcnSpatialNorm, 27
braid_PtFcnSum, 28
braid_Vector, 28

util.h, 70
_braid_Max, 71
_braid_ParFprintfFlush, 71
_braid_ProjectInterval, 71
_braid_SetAccuracy, 71
_braid_printf, 71

va
_braid_Grid, 60

va_alloc
_braid_Grid, 60

value
_braid_AccuracyHandle, 52

vector_ptr
_braid_CommHandle, 54

wa
_braid_Grid, 60

wa_alloc
_braid_Grid, 60

wrapper_test
_braid_AccessStatus, 51

XBraid status routines, 38
_braid_AccessStatusDestroy, 39
_braid_AccessStatusInit, 39
_braid_CoarsenRefStatusDestroy, 39
_braid_CoarsenRefStatusInit, 39
_braid_PhiStatusDestroy, 41
_braid_PhiStatusInit, 41
_braid_StatusElt, 39
braid_AccessStatus, 39
braid_AccessStatusGetDone, 41
braid_AccessStatusGetIter, 41
braid_AccessStatusGetLevel, 41

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

78 INDEX

braid_AccessStatusGetResidual, 42
braid_AccessStatusGetT, 42
braid_AccessStatusGetTILD, 42
braid_AccessStatusGetWrapperTest, 42
braid_CoarsenRefStatus, 39
braid_CoarsenRefStatusGetCTprior, 42
braid_CoarsenRefStatusGetCTstop, 43
braid_CoarsenRefStatusGetFTprior, 43
braid_CoarsenRefStatusGetFTstop, 43
braid_CoarsenRefStatusGetTpriorTstop, 43
braid_CoarsenRefStatusGetTstart, 43
braid_PhiStatus, 39
braid_PhiStatusGetAccuracy, 44
braid_PhiStatusGetTstart, 44
braid_PhiStatusGetTstartTstop, 44
braid_PhiStatusGetTstop, 44
braid_PhiStatusSetRFactor, 44

XBraid test routines, 46
braid_TestAll, 46
braid_TestBuf, 47
braid_TestClone, 47
braid_TestCoarsenRefine, 48
braid_TestInitAccess, 48
braid_TestSpatialNorm, 49
braid_TestSum, 49

Generated on Tue Nov 12 2013 12:07:46 for Braid by Doxygen

	Abstract
	Introduction
	Meaning of the name
	Overview of the XBraid Algorithm
	Two-Grid Algorithm
	Summary

	Overview of the XBraid Code
	Parallel decomposition and memory
	Cycling and relaxation strategies
	Overlapping communication and computation
	Configuring the XBraid Hierarchy
	Halting tolerance
	Heat equation example

	Citing XBraid
	Summary

	Example
	Building XBraid
	Compiling and running the examples
	Coding Style
	Using Doxygen
	Regression Testing
	Module Index
	Modules

	Data Structure Index
	Data Structures

	File Index
	File List

	Module Documentation
	User-written routines
	Detailed Description
	Typedef Documentation

	User interface routines
	Detailed Description

	General Interface routines
	Detailed Description
	Typedef Documentation
	Function Documentation

	XBraid status routines
	Detailed Description
	Macro Definition Documentation
	Typedef Documentation
	Function Documentation

	XBraid test routines
	Detailed Description
	Function Documentation

	Data Structure Documentation
	_braid_AccessStatus Struct Reference
	Detailed Description
	Field Documentation

	_braid_AccuracyHandle Struct Reference
	Detailed Description
	Field Documentation

	_braid_CoarsenRefStatus Struct Reference
	Detailed Description
	Field Documentation

	_braid_CommHandle Struct Reference
	Detailed Description
	Field Documentation

	_braid_Core Struct Reference
	Detailed Description
	Field Documentation

	_braid_Grid Struct Reference
	Detailed Description
	Field Documentation

	_braid_PhiStatus Struct Reference
	Detailed Description
	Field Documentation

	File Documentation
	_braid.h File Reference
	Detailed Description
	Macro Definition Documentation
	Function Documentation
	Variable Documentation

	braid.h File Reference
	Detailed Description

	braid_defs.h File Reference
	Detailed Description
	Macro Definition Documentation
	Typedef Documentation
	Variable Documentation

	braid_status.h File Reference
	Detailed Description

	braid_test.h File Reference
	Detailed Description

	util.h File Reference
	Detailed Description
	Function Documentation

	Index

